Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 11(19): 8202-8207, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32897076

RESUMO

Redox flow batteries (RFBs) operate by storing electrons on soluble molecular anolytes and catholytes, and large increases in the energy density of RFBs could be achieved if multiple electrons could be stored in each molecular analyte. Here, we report an organoaluminum analyte, [(I2P-)2Al]+, in which four electrons can be stored on organic ligands, and for which charging and discharging cycles performed in a symmetric nonaqueous RFB configuration remain stable for over 100 cycles at 70% state of charge and 97% Coulombic efficiency (I2P is a bis(imino)pyridine ligand). The stability of the analyte is promoted by the kinetic inertness of the anolyte to trace water in solvents and by the redox inertness of the Al(III) ion to the applied current. The solubility of the analyte was optimized by exchanging the counteranion for trifluoromethanesulfonate (triflate), and the cell was further optimized using graphite rods as electrodes which, in comparison with glassy carbon and reticulated vitreous carbon, eliminated deposition of analyte on the electrode. Proof-of-principle experiments performed with an asymmetric NRFB configuration further demonstrate that up to four electrons can be stored in the cell with no degradation of the analyte over multiple cycles that show 96% Coulombic efficiency.

2.
Chem Sci ; 12(2): 675-682, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34163799

RESUMO

Ligand-based mixed valent (MV) complexes of Al(iii) incorporating electron donating (ED) and electron withdrawing (EW) substituents on bis(imino)pyridine ligands (I2P) have been prepared. The MV states containing EW groups are both assigned as Class II/III, and those with ED functional groups are Class III and Class II/III in the (I2P-)(I2P2-)Al and [(I2P2-)(I2P3-)Al]2- charge states, respectively. No abrupt changes in delocalization are observed with ED and EW groups and from this we infer that ligand and metal valence p-orbitals are well-matched in energy and the absence of LMCT and MLCT bands supports the delocalized electronic structures. The MV ligand charge states (I2P-)(I2P2-)Al and [(I2P2-)(I2P3-)Al]2- show intervalence charge transfer (IVCT) transitions in the regions 6850-7740 and 7410-9780 cm-1, respectively. Alkali metal cations in solution had no effect on the IVCT bands of [(I2P2-)(I2P3-)Al]2- complexes containing -PhNMe2 or -PhF5 substituents. Minor localization of charge in [(I2P2-)(I2P3-)Al]2- was observed when -PhOMe substituents are included.

3.
J Am Chem Soc ; 141(40): 15792-15803, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31510741

RESUMO

Water-stable organic mixed valence (MV) compounds have been prepared by the reaction of reduced bis(imino)pyridine ligands (I2P) with the trichloride salts of Al, Ga, and In. The coordination of two tridentate ligands to each ion affords octahedral complexes that are accessible with five ligand charge states: [(I2P0)(I2P-)M]2+, [(I2P-)2M]+, (I2P-)(I2P2-)M, [(I2P2-)2M]-, and [(I2P2-)(I2P3-)M]2-, and for M = Al only, [(I2P3-)2M]3-. In solid-state structures, the anionic members of the redox series are stabilized by the intercalation of Na+ cations within the ligands. The MV members of the redox series, (I2P-)(I2P2-)M and [(I2P2-)(I2P3-)M]2-, show characteristic intervalence transitions, in the near-infrared regions between 6800-7400 and 7800-9000 cm-1, respectively. Cyclic voltammetry (CV), NIR spectroscopic, and X-ray structural studies support the assignment of class II for compounds [(I2P2-)(I2P3-)M]2- and class III for M = Al and Ga in (I2P-)(I2P2-)M. All compounds containing a singly reduced I2P- ligand exhibit a sharp, low-energy transition in the 5100-5600 cm-1 region that corresponds to a π*-π* transition. CV studies demonstrate that the electron-transfer events in each of the redox series, Al, Ga, and In, span 2.2, 1.4, and 1.2 V, respectively.

4.
Chemistry ; 25(2): 454-458, 2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30304572

RESUMO

Electrochemical generation of ammonia (NH3 ) from nitrogen (N2 ) using renewable electricity is a desirable alternative to current NH3 production methods, which consume roughly 1 % of the world's total energy use. The use of catalysts to manipulate the required electron and proton transfer reactions with low energy input is also a chemical challenge that requires development of fundamental reaction pathways. This work presents an approach to the electrochemical reduction of N2 into NH3 using a coordination complex of aluminum(III), which facilitates NH3 production at -1.16 V vs. SCE. Reactions performed under 15 N2 liberate 15 NH3 . Electron paramagnetic resonance spectroscopic characterization of a reduced intermediate and investigations of product inhibition, which limit the reaction to sub-stoichiometric, are also presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...