Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 630(8016): 368-374, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38867128

RESUMO

Despite its disordered liquid-like structure, glass exhibits solid-like mechanical properties1. The formation of glassy material occurs by vitrification, preventing crystallization and promoting an amorphous structure2. Glass is fundamental in diverse fields of materials science, owing to its unique optical, chemical and mechanical properties as well as durability, versatility and environmental sustainability3. However, engineering a glassy material without compromising its properties is challenging4-6. Here we report the discovery of a supramolecular amorphous glass formed by the spontaneous self-organization of the short aromatic tripeptide YYY initiated by non-covalent cross-linking with structural water7,8. This system uniquely combines often contradictory sets of properties; it is highly rigid yet can undergo complete self-healing at room temperature. Moreover, the supramolecular glass is an extremely strong adhesive yet it is transparent in a wide spectral range from visible to mid-infrared. This exceptional set of characteristics is observed in a simple bioorganic peptide glass composed of natural amino acids, presenting a multi-functional material that could be highly advantageous for various applications in science and engineering.


Assuntos
Adesivos , Vidro , Oligopeptídeos , Adesivos/química , Vidro/química , Temperatura , Vitrificação , Água/química , Oligopeptídeos/química , Tirosina/química , Luz , Raios Infravermelhos
2.
Nanoscale Adv ; 5(2): 344-348, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36756258

RESUMO

Nucleobase crystals demonstrate unique intrinsic fluorescence properties in the visible spectral range. This is in contrast to their monomeric counterparts. Moreover, some nucleobases were found to exhibit red edge excitation shift. This behavior is uncommon in the field of organic supramolecular materials and could have implications in fields such as therapeutics of metabolic disorders and materials science.

3.
ACS Appl Mater Interfaces ; 14(50): 55392-55401, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36475602

RESUMO

Defrost sensors are a crucial element for proper functioning of the pharmaceutical cold chain. In this paper, the self-assembled peptide-based hydrogels were used to construct a sensitive defrost sensor for the transportation and storage of medications and biomaterials. The turbidity of the peptide hydrogel was employed as a marker of the temperature regime. The gelation kinetics under different conditions was studied to detect various stages of hydrogel structural transitions aimed at tuning the system properties. The developed sensor can be stored at room temperature for a long period, irreversibly indicates whether the product has been thawed, and can be adjusted to a specific temperature range and detection time.


Assuntos
Hidrogéis , Refrigeração , Hidrogéis/química , Materiais Biocompatíveis , Peptídeos/química , Temperatura
4.
Angew Chem Int Ed Engl ; 61(3): e202113845, 2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34791758

RESUMO

Despite the fundamental clinical importance of amyloid fibril formation, its mechanism is still enigmatic. Crystallography of minimal amyloid models was a milestone in the understanding of the architecture and biological activities of amyloid fibers. However, the crystal structure of ultimate dipeptide-based amyloids is not yet reported. Herein, we present the crystal structure of a typical amyloid-forming minimal dipeptide, Ac-Phe-Phe-NH2 (Ac-FF-NH2 ), showing a canonical ß-sheet structure at the atomic level. The simplicity of the structure helped in investigating amyloid-inhibition using crystallography, never previously reported for larger peptide models. Interestingly, in the presence of an inhibitor, the supramolecular packing of Ac-FF-NH2 molecules rearranged into a supramolecular 2-fold helix (21 helix). This study promotes our understanding of the mechanism of amyloid formation and of the structural transitions that occur during the inhibition process in a most fundamental model.


Assuntos
Peptídeos beta-Amiloides/antagonistas & inibidores , Cinamatos/farmacologia , Depsídeos/farmacologia , Peptídeos beta-Amiloides/metabolismo , Cinamatos/química , Depsídeos/química , Humanos , Modelos Moleculares , Tamanho da Partícula , Ácido Rosmarínico
5.
Angew Chem Int Ed Engl ; 60(48): 25339-25345, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34590774

RESUMO

The self-assembly of peptides is a key direction for fabrication of advanced materials. Novel approaches for fine tuning of macroscopic and microscopic properties of peptide self-assemblies are of a high demand for constructing biomaterials with desired properties. In this work, while studying the kinetics of the Fmoc-Diphenylalanine (Fmoc-FF) dipeptide self-assembly using the Thioflavin T (ThT) dye, we observed that the presence of ThT strongly modifies structural and mechanical properties of the Fmoc-FF hydrogel. Notably, the presence of ThT resulted in a tenfold increase of the gelation time and in the formation of short and dense fibers in the hydrogel. As a result of these morphological alteration higher thermal stability, and most important, tenfold increase of the hydrogel rigidity was achieved. Hence, ThT not only slowed the kinetics of the Fmoc-FF hydrogel formation, but also strongly enhanced its mechanical properties. In this study, we provide a detailed description of the ThT effect on the hydrogel properties and suggest the mechanisms for this phenomenon, paving the way for the novel approach to the control of the peptide hydrogels' micro- and macroscale properties.

6.
Int J Mol Sci ; 22(17)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34502542

RESUMO

Supramolecular hydrogels formed by the self-assembly of amino-acid based gelators are receiving increasing attention from the fields of biomedicine and material science. Self-assembled systems exhibit well-ordered functional architectures and unique physicochemical properties. However, the control over the kinetics and mechanical properties of the end-products remains puzzling. A minimal alteration of the chemical environment could cause a significant impact. In this context, we report the effects of modifying the position of a single atom on the properties and kinetics of the self-assembly process. A combination of experimental and computational methods, used to investigate double-fluorinated Fmoc-Phe derivatives, Fmoc-3,4F-Phe and Fmoc-3,5F-Phe, reveals the unique effects of modifying the position of a single fluorine on the self-assembly process, and the physical properties of the product. The presence of significant physical and morphological differences between the two derivatives was verified by molecular-dynamics simulations. Analysis of the spontaneous phase-transition of both building blocks, as well as crystal X-ray diffraction to determine the molecular structure of Fmoc-3,4F-Phe, are in good agreement with known changes in the Phe fluorination pattern and highlight the effect of a single atom position on the self-assembly process. These findings prove that fluorination is an effective strategy to influence supramolecular organization on the nanoscale. Moreover, we believe that a deep understanding of the self-assembly process may provide fundamental insights that will facilitate the development of optimal amino-acid-based low-molecular-weight hydrogelators for a wide range of applications.


Assuntos
Aminoácidos/química , Fluorenos/química , Halogenação , Simulação de Dinâmica Molecular , Fenilalanina/química , Algoritmos , Hidrogéis/química , Cinética , Microscopia Eletrônica de Transmissão , Estrutura Molecular , Peso Molecular , Transição de Fase , Fenômenos Físicos , Reologia , Difração de Raios X
7.
iScience ; 24(7): 102695, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34258546

RESUMO

Luminescence of biomolecules in the visible range of the spectrum has been experimentally observed upon aggregation, contrary to their monomeric state. However, the physical basis for this phenomenon is still elusive. Here, we systematically examine all coded amino acids to provide non-biased empirical insights. Several amino acids, including non-aromatic, show intense visible luminescence. Lysine crystals display the highest signal, whereas the very chemically similar non-coded ornithine does not, implying a role for molecular packing rather than the chemical characteristics. Furthermore, cysteine shows luminescence that is indeed crystal packing dependent as repeated rearrangements between two crystal structures result in a reversible on-off optical transition. In addition, ultrafast lifetime decay is experimentally validated, corroborating a recently raised hypothesis regarding the governing role of nπ∗ states in the emission formation. Collectively, our study supports that electronic interactions between non-fluorescent, non-absorbing molecules at the monomeric state may result in reversible optically active states by the formation of supramolecular fluorophores.

8.
Angew Chem Int Ed Engl ; 59(52): 23731-23739, 2020 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-32894630

RESUMO

Supramolecular polymer co-assembly is a useful approach to modulate peptide nanostructures. However, the co-assembly scenario where one of the peptide building blocks simultaneously forms a hydrogel is yet to be studied. Herein, we investigate the co-assembly formation of diphenylalanine (FF), and Fmoc-diphenylalanine (FmocFF) within the 3D network of FmocFF hydrogel. The overlapping peptide sequence between the two building blocks leads to their co-assembly within the gel state modulating the nature of the FF crystals. We observe the formation of branched microcrystalline aggregates with an atypical curvature, in contrast to the FF assemblies obtained from aqueous solution. Optical microscopy reveal the sigmoidal kinetic growth profile of these aggregates. Microfluidics and ToF-SIMS experiments exhibit the presence of co-assembled structures of FF and FmocFF in the crystalline aggregates. Molecular dynamics simulation was used to decipher the mechanism of co-assembly formation.

9.
J Alzheimers Dis ; 73(1): 59-62, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31796672

RESUMO

Alzheimer's disease (AD) is the most common cause of dementia. Despite substantial investment in research, there are no current effective treatments to prevent or delay the onset and development of AD and the exact molecular mechanism of AD pathogenesis is still not fully understood. Researchers have long suspected that microbial infections may play a role in AD; however, this hypothesis has been greatly overlooked for decades, only recently gaining a traction and recognition within the broad scientific community due to new overwhelming evidence on the association of various pathogenic microbes and AD. Here, we provide our perspective on the significance of these findings, which shed light on the interplay between molecular self-assembly, neurodegeneration, and antimicrobial peptides, as well as propose an amendment to the amyloid cascade hypothesis. It is important to note that this association does not yet prove a causal link, but these reports warrant a thorough investigation into the microbial infection-AD hypothesis which might in turn deliver the elusive therapeutic target the scientific community has been so desperately searching for.


Assuntos
Doença de Alzheimer/etiologia , Infecções/complicações , Idoso , Idoso de 80 Anos ou mais , Gengivite/complicações , Gengivite/microbiologia , Infecções por Herpesviridae/complicações , Infecções por Herpesviridae/virologia , Humanos
10.
ACS Nano ; 13(12): 14477-14485, 2019 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-31755683

RESUMO

The formation of ordered nanostructures by metabolites is gaining increased interest due to the simplicity of the building blocks and their natural occurrence. Specifically, aromatic amino acids possess the ability to form ordered supramolecular interactions due to their limited solubility in aqueous solution. Unexpectedly, l-tyrosine (l-Tyr) is almost 2 orders of magnitude less soluble in water compared to l-phenylalanine (l-Phe). However, the underlying mechanism is not fully understood as l-Tyr is more polar. Here, we explore the utilization of insoluble tyrosine assemblies for technological applications and their molecular basis by manipulating the basic building blocks of tightly packed dimers. We show that the addition of an amyloid inhibition agent increases l-Tyr solubility due to the disruption of the dimer formation. The molecular organization grants the l-Tyr crystal higher thermal stability and mechanical properties between three amino acids. Additionally, l-Tyr crystals are shown to generate high and stable piezoelectric power outputs under mechanical pressure in a sandwich device. By incorporating the rigid l-Tyr crystals into a soft polymer, a mechano-responsive bending composite was fabricated. Furthermore, the l-Tyr crystalline needles exhibit an active photowaveguiding property, making them promising candidates for the generation of photonic biomaterial-based devices. The present work exemplifies a feasible strategy to explore physical properties of supramolecular self-assemblies comprises minimalistic naturally occurring building blocks and their applications in energy harvesting, photonic devices, stretchable electronics, and soft robotics.

11.
J Am Chem Soc ; 141(12): 4833-4838, 2019 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-30829477

RESUMO

Self-assembling peptides and oligonucleotides have given rise to synthetic materials with several applications in nanotechnology. Aggregation of synthetic oligosaccharides into well-defined architectures has not been reported even though natural polysaccharides, such as cellulose and chitin, are key structural components of biomaterials. Here, we report that six synthetic oligosaccharides, ranging from dimers to hexamers, self-assemble into nanostructures of varying morphologies and emit within the visible spectrum in an excitation-dependent manner. Well-defined differences in chain length, monomer modification, and aggregation methods yield glycomaterials with distinct shapes and properties. The excitation-dependent fluorescence in a broad range within the visible spectrum illustrates their potential for use in optical devices and imaging applications. We anticipate that our systematic approach of studying well-defined synthetic oligosaccharides will form the foundation of our understanding of carbohydrate interactions in nature.


Assuntos
Oligossacarídeos/química , Fenômenos Ópticos
12.
Nanotechnology ; 30(10): 102001, 2019 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-30537683

RESUMO

Molecular self-assembly is a major approach for the fabrication of functional supramolecular nanomaterials. This dynamic, straightforward, bottom-up procedure may result in the formation of various architectures at the nano-scale, with remarkable physical and chemical characteristics. Biological and bio-inspired building blocks are especially attractive due to their intrinsic tendency to assemble into well-organized structures, as well as their inherent biocompatibility. To further expand the morphological diversity, co-assembly methods have been developed, allowing to produce alternative unique architectures, enhanced properties, and improved structural control. However, in many cases, mechanistic understanding of the self- and co-assembly processes is still lacking. Microfluidic techniques offer a set of exclusive tools for real-time monitoring of biomolecular self-organization, which is crucial for the study of such dynamic processes. Assembled nuclei, confined by micron-scale pillars, could be subjected to controlled environments aiming to assess the effect of different conditions on the assembly process. Other microfluidics setups can produce droplets at a rate of over 100 s-1, with volumes as small as several picoliters. Under these conditions, each droplet can serve as an individual pico/nano-reactor allowing nucleation and assembly. These processes can be monitored, analyzed and imaged, by various techniques including simple bright-field microscopy. Elucidating the mechanism of such molecular events may serve as a conceptual stepping-stone for the rational control of the resulting physicochemical properties.


Assuntos
Substâncias Macromoleculares/síntese química , Microfluídica , Nanoestruturas/química , Materiais Biocompatíveis/síntese química , Substâncias Macromoleculares/química , Microquímica
13.
J Am Chem Soc ; 141(1): 363-369, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30532955

RESUMO

The ensemble of native, folded state was once considered to represent the global energy minimum of a given protein sequence. More recently, the discovery of the cross-ß amyloid state revealed that deeper energy minima exist, often associated with pathogenic, fibrillar deposits, when the concentration of proteins reaches a critical value. Fortunately, a sizable energy barrier impedes the conversion from native to pathogenic states. However, little is known about the structure of the related transition state. In addition, there are indications of polymorphism in the amyloidogenic process. Here, we report the first evidence of the conversion of metastable cross-α-helical crystals to thermodynamically stable cross-ß-sheet-like fibrils by a de novo designed heptapeptide. Furthermore, for the first time, we demonstrate at atomic resolution that the flip of a peptide plane from a type I to a type II' turn facilitates transformation to cross-ß structure and assembly of a dry steric zipper. This study establishes the potential of a peptide turn, a common protein secondary structure, to serve as a principal gatekeeper between a native metastable folded state and the amyloid state.


Assuntos
Amiloide/química , Agregados Proteicos , Cinética , Modelos Moleculares , Peptídeos/química , Dobramento de Proteína , Estrutura Secundária de Proteína , Termodinâmica
14.
Angew Chem Int Ed Engl ; 57(38): 12444-12447, 2018 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-30088843

RESUMO

The formation of apoptosis-inducing amyloidal structures by metabolites has significantly extended the "amyloid hypothesis" to include non-proteinaceous, single metabolite building blocks. However, detection of metabolite assemblies is restricted compared to their larger protein-based counterparts owing to the hindrance of external labelling and limited immunohistochemical detection tools. Herein, we present the detection of the formation, dynamics, and cellular distribution of metabolite amyloid-like structures and provide mechanistic insights into the generation of supramolecular chromophores. Moreover, the intrinsic fluorescence properties allow the detection of metabolite assemblies in living cells without the use of external dyes. Altogether, this intrinsic fluorescence of metabolite assemblies further verifies their amyloidal nature, while providing an important tool for further investigation of their pathological role in inborn error of metabolism disorders.


Assuntos
Amiloide/química , Amiloide/metabolismo , Linhagem Celular Tumoral , Fluorescência , Células HEK293 , Humanos , Microscopia Confocal
15.
ACS Appl Mater Interfaces ; 10(24): 20783-20789, 2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-29842782

RESUMO

Molecular self-assembly of short peptide building blocks leads to the formation of various material architectures that may possess unique physical properties. Recent studies had confirmed the key role of biaromaticity in peptide self-assembly, with the diphenylalanine (FF) structural family as an archetypal model. Another significant direction in the molecular engineering of peptide building blocks is the use of fluorenylmethoxycarbonyl (Fmoc) modification, which promotes the assembly process and may result in nanostructures with distinctive features and macroscopic hydrogel with supramolecular features and nanoscale order. Here, we explored the self-assembly of the protected, noncoded fluorenylmethoxycarbonyl-ß,ß-diphenyl-Ala-OH (Fmoc-Dip) amino acid. This process results in the formation of elongated needle-like crystals with notable aromatic continuity. By altering the assembly conditions, arrays of spherical particles were formed that exhibit strong light scattering. These arrays display vivid coloration, strongly resembling the appearance of opal gemstones. However, unlike the Rayleigh scattering effect produced by the arrangement of opal, the described optical phenomenon is attributed to Mie scattering. Moreover, by controlling the solution evaporation rate, i.e., the assembly kinetics, we were able to manipulate the resulting coloration. This work demonstrates a bottom-up approach, utilizing self-assembly of a protected amino acid minimal building block, to create arrays of organic, light-scattering colorful surfaces.

16.
Open Biol ; 8(1)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29367352

RESUMO

The accumulation of various metabolites appears to be associated with diverse human diseases. However, the aetiological link between metabolic alteration and the observed diseases is still elusive. This includes the correlation between the abnormally high levels of homocysteine and quinolinic acid in Alzheimer's disease, as well as the accumulation of oncometabolites in malignant processes. Here, we suggest and discuss a possible mechanistic insight into metabolite accumulation in conditions such as neurodegenerative diseases and cancer. Our hypothesis is based on the demonstrated ability of metabolites to form amyloid-like structures in inborn error of metabolism disorders and the potential of such metabolite amyloids to promote protein aggregation. This notion can provide a new paradigm for neurodegeneration and cancer, as both conditions were linked to loss of function due to protein aggregation. Similar to the well-established observation of amyloid formation in many degenerative disorders, the formation of amyloids by tumour-suppressor proteins, including p53, was demonstrated in malignant states. Moreover, this new paradigm could fill the gap in understanding the high occurrence of specific types of cancer among genetic error of metabolism patients. This hypothesis offers a fresh view on the aetiology of some of the most abundant human maladies and may redirect the efforts towards new therapeutic developments.


Assuntos
Amiloide/metabolismo , Doenças Metabólicas/metabolismo , Metaboloma , Neoplasias/metabolismo , Doenças Neurodegenerativas/metabolismo , Amiloide/química , Animais , Humanos , Doenças Metabólicas/epidemiologia , Neoplasias/epidemiologia , Doenças Neurodegenerativas/epidemiologia
17.
Adv Mater ; 30(5)2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29215205

RESUMO

One major challenge of functional material fabrication is combining flexibility, strength, and toughness. In several biological and artificial systems, these desired mechanical properties are achieved by hierarchical architectures and various forms of anisotropy, as found in bones and nacre. Here, it is reported that crystals of N-capped diphenylalanine, one of the most studied self-assembling systems in nanotechnology, exhibit well-ordered packing and diffraction of sub-Å resolution, yet display an exceptionally flexible nature. To explore this flexibility, the mechanical properties of individual crystals are evaluated, assisted by density functional theory calculations. High-resolution scanning electron microscopy reveals that the crystals are composed of layered self-assembled structures. The observed combination of strength, toughness, and flexibility can therefore be explained in terms of weak interactions between rigid layers. These crystals represent a novel class of self-assembled layered materials, which can be utilized for various technological applications, where a combination of usually contradictory mechanical properties is desired.


Assuntos
Peptídeos/química , Microscopia Eletrônica de Varredura , Nácar , Nanotecnologia
18.
ACS Nano ; 11(6): 5960-5969, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28575577

RESUMO

The phenomenon of protein aggregation into amyloid fibrils is associated with a large number of major diseases of unrelated etiology. Unraveling the mechanism of amyloid self-assembly and identifying therapeutic directions to control this process are of utmost importance. Research in this field has been hampered by several challenges, including reproducibility, low protein purification yields, and the inherent aggregation propensity of amyloidogenic proteins, making them extremely difficult to study. Herein, on the basis of the similarity in the assembly mechanism, as well as the physical, chemical, and biological characteristics, of diphenylalanine nanostructures and aromatic amino acid containing amyloid fibrils, we report a simple, yet robust peptide-based platform that could be used for screening of small molecules potentially capable of interfering with the aggregation process and for mechanistic exploration of their mode of action. The system was validated using four small-molecule inhibitors, and the effect was examined via turbidity assay, thioflavin T fluorescence, and electron microscopy. The aggregation profile of diphenylalanine was very similar to that of ß-amyloid polypeptide in the presence of the modulators. Rosmarinic acid emerged as an extremely potent inhibitor and a destabilizer of the aggregates. The effect of stoichiometric variation of rosmarinic acid on the process of destabilization was also probed using a microfluidic technique. Finally, the formation of equimolar complexes of diphenylalanine and inhibitors was detected using mass spectrometry. This approach not only provides a system for high-throughput screening of possible inhibitor molecules from larger libraries of modulators, but is also highly useful for understanding the mechanistic aspects of the interactions leading to the process of inhibition.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Fenilalanina/análogos & derivados , Agregados Proteicos/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Dipeptídeos , Avaliação Pré-Clínica de Medicamentos/instrumentação , Ensaios de Triagem em Larga Escala/instrumentação , Ensaios de Triagem em Larga Escala/métodos , Humanos , Dispositivos Lab-On-A-Chip , Fenilalanina/metabolismo , Bibliotecas de Moléculas Pequenas/química
19.
Soft Matter ; 12(47): 9451-9457, 2016 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-27841428

RESUMO

Peptide-based biomaterials are key to the future of diagnostics and therapy, promoting applications such as tissue scaffolds and drug delivery vehicles. To realise the full potential of the peptide systems, control and optimisation of material properties are essential. Here we investigated the co-assembly of the minimal amyloid motif peptide, diphenylalanine (FF), and its tert-butoxycarbonyl (Boc)-modified derivative. Using Atomic Force Microscopy, we demonstrated that the co-assembled fibers are less rigid and show a curvier morphology. We propose that the Boc-modification of FF disrupts the hydrogen bond packing of adjacent N-termini, as supported by Fourier transform infrared and fluorescence spectroscopic data. Such rationally modified co-assemblies offer chemical functionality for after-assembly modification and controllable surface properties for tissue engineering scaffolds, along with tunable morphological vs. mechanical properties.

20.
Nat Commun ; 7: 13190, 2016 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-27779182

RESUMO

The dynamic nature of supramolecular polymers has a key role in their organization. Yet, the manipulation of their dimensions and polarity remains a challenge. Here, the minimalistic diphenylalanine building block was applied to demonstrate control of nano-assemblies growth and shrinkage using microfluidics. To fine-tune differential local environments, peptide nanotubes were confined by micron-scale pillars and subjected to monomer flows of various saturation levels to control assembly and disassembly. The small-volume device allows the rapid adjustment of conditions within the system. A simplified kinetic model was applied to calculate parameters of the growth mechanism. Direct real-time microscopy analysis revealed that different peptide derivatives show unidirectional or bidirectional axial dimension variation. Atomistic simulations show that unidirectional growth is dictated by the differences in the axial ends, as observed in the crystalline order of symmetry. This work lays foundations for the rational control of nano-materials dimensions for applications in biomedicine and material science.


Assuntos
Substâncias Macromoleculares/química , Microfluídica/métodos , Peptídeos/química , Polímeros/química , Dipeptídeos , Cinética , Microfluídica/instrumentação , Simulação de Dinâmica Molecular , Nanotubos de Peptídeos/química , Fenilalanina/análogos & derivados , Fenilalanina/química , Polímeros/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...