Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 72(2): 263-78, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16397772

RESUMO

A physical model was derived for the synthesis of the antibiotic cephalexin with an industrial immobilized penicillin G acylase, called Assemblase. In reactions catalyzed by Assemblase, less product and more by-product are formed in comparison with a free-enzyme catalyzed reaction. The model incorporates reaction with a heterogeneous enzyme distribution, electrostatically coupled transport, and pH-dependent dissociation behavior of reactants and is used to obtain insight in the complex interplay between these individual processes leading to the suboptimal conversion. The model was successfully validated with synthesis experiments for conditions ranging from heavily diffusion limited to hardly diffusion limited, including substrate concentrations from 50 to 600 mM, temperatures between 273 and 303 K, and pH values between 6 and 9. During the conversion of the substrates into cephalexin, severe pH gradients inside the biocatalytic particle, which were previously measured by others, were predicted. Physical insight in such intraparticle process dynamics may give important clues for future biocatalyst design. The modular construction of the model may also facilitate its use for other bioconversions with other biocatalysts.


Assuntos
Enzimas Imobilizadas/metabolismo , Modelos Teóricos , Algoritmos , Difusão , Enzimas Imobilizadas/análise , Enzimas Imobilizadas/química , Concentração de Íons de Hidrogênio , Estrutura Molecular , Tamanho da Partícula , Penicilina Amidase/análise , Penicilina Amidase/química , Penicilina Amidase/metabolismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...