Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 402: 130768, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38697367

RESUMO

The bark represents the outer protective layer of trees. It contains high concentrations of antimicrobial extractives, in addition to regular wood polymers. It represents a huge underutilized side stream in forestry, but biotechnological valorization is hampered by a lack of knowledge on microbial bark degradation. Many fungi are efficient lignocellulose degraders, and here, spruce bark degradation by five species, Dichomitus squalens, Rhodonia placenta, Penicillium crustosum, Trichoderma sp. B1, and Trichoderma reesei, was mapped, by continuously analyzing chemical changes in the bark over six months. The study reveals how fungi from different phyla degrade bark using diverse strategies, regarding both wood polymers and extractives, where toxic resin acids were degraded by Basidiomycetes but unmodified/tolerated by Ascomycetes. Proteome analyses of the white-rot D. squalens revealed several proteins, with both known and unknown functions, that were specifically upregulated during growth on bark. This knowledge can accelerate improved utilization of an abundant renewable resource.


Assuntos
Picea , Casca de Planta , Polissacarídeos , Picea/microbiologia , Casca de Planta/química , Polissacarídeos/metabolismo , Fungos/metabolismo , Lignina/metabolismo , Biodegradação Ambiental , Proteínas Fúngicas/metabolismo
2.
Environ Microbiome ; 18(1): 56, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37420292

RESUMO

BACKGROUND: 'Omics methods have empowered scientists to tackle the complexity of microbial communities on a scale not attainable before. Individually, omics analyses can provide great insight; while combined as "meta-omics", they enhance the understanding of which organisms occupy specific metabolic niches, how they interact, and how they utilize environmental nutrients. Here we present three integrative meta-omics workflows, developed in Galaxy, for enhanced analysis and integration of metagenomics, metatranscriptomics, and metaproteomics, combined with our newly developed web-application, ViMO (Visualizer for Meta-Omics) to analyse metabolisms in complex microbial communities. RESULTS: In this study, we applied the workflows on a highly efficient cellulose-degrading minimal consortium enriched from a biogas reactor to analyse the key roles of uncultured microorganisms in complex biomass degradation processes. Metagenomic analysis recovered metagenome-assembled genomes (MAGs) for several constituent populations including Hungateiclostridium thermocellum, Thermoclostridium stercorarium and multiple heterogenic strains affiliated to Coprothermobacter proteolyticus. The metagenomics workflow was developed as two modules, one standard, and one optimized for improving the MAG quality in complex samples by implementing a combination of single- and co-assembly, and dereplication after binning. The exploration of the active pathways within the recovered MAGs can be visualized in ViMO, which also provides an overview of the MAG taxonomy and quality (contamination and completeness), and information about carbohydrate-active enzymes (CAZymes), as well as KEGG annotations and pathways, with counts and abundances at both mRNA and protein level. To achieve this, the metatranscriptomic reads and metaproteomic mass-spectrometry spectra are mapped onto predicted genes from the metagenome to analyse the functional potential of MAGs, as well as the actual expressed proteins and functions of the microbiome, all visualized in ViMO. CONCLUSION: Our three workflows for integrative meta-omics in combination with ViMO presents a progression in the analysis of 'omics data, particularly within Galaxy, but also beyond. The optimized metagenomics workflow allows for detailed reconstruction of microbial community consisting of MAGs with high quality, and thus improves analyses of the metabolism of the microbiome, using the metatranscriptomics and metaproteomics workflows.

3.
ISME J ; 17(7): 1128-1140, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37169869

RESUMO

Protozoa comprise a major fraction of the microbial biomass in the rumen microbiome, of which the entodiniomorphs (order: Entodiniomorphida) and holotrichs (order: Vestibuliferida) are consistently observed to be dominant across a diverse genetic and geographical range of ruminant hosts. Despite the apparent core role that protozoal species exert, their major biological and metabolic contributions to rumen function remain largely undescribed in vivo. Here, we have leveraged (meta)genome-centric metaproteomes from rumen fluid samples originating from both cattle and goats fed diets with varying inclusion levels of lipids and starch, to detail the specific metabolic niches that protozoa occupy in the context of their microbial co-habitants. Initial proteome estimations via total protein counts and label-free quantification highlight that entodiniomorph species Entodinium and Epidinium as well as the holotrichs Dasytricha and Isotricha comprise an extensive fraction of the total rumen metaproteome. Proteomic detection of protozoal metabolism such as hydrogenases (Dasytricha, Isotricha, Epidinium, Enoploplastron), carbohydrate-active enzymes (Epidinium, Diplodinium, Enoploplastron, Polyplastron), microbial predation (Entodinium) and volatile fatty acid production (Entodinium and Epidinium) was observed at increased levels in high methane-emitting animals. Despite certain protozoal species having well-established reputations for digesting starch, they were unexpectedly less detectable in low methane emitting-animals fed high starch diets, which were instead dominated by propionate/succinate-producing bacterial populations suspected of being resistant to predation irrespective of host. Finally, we reaffirmed our abovementioned observations in geographically independent datasets, thus illuminating the substantial metabolic influence that under-explored eukaryotic populations have in the rumen, with greater implications for both digestion and methane metabolism.


Assuntos
Cilióforos , Rúmen , Animais , Bovinos , Rúmen/microbiologia , Proteômica , Cilióforos/genética , Cilióforos/metabolismo , Ruminantes/metabolismo , Amido/metabolismo , Metano/metabolismo
4.
Methods Mol Biol ; 2657: 27-51, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37149521

RESUMO

Lytic polysaccharide monooxygenases perform oxidative cleavage of glycosidic bonds in various polysaccharides. The majority of LMPOs studied so far possess activity on either cellulose or chitin and analysis of these activities is therefore the main focus of this review. Notably, however, the number of LPMOs that are active on other polysaccharides is increasing. The products generated by LPMOs from cellulose are either oxidized in the downstream end (at C1) or upstream end (at C4), or at both ends. These modifications only result in small structural changes, which makes both chromatographic separation and product identification by mass spectrometry challenging. The changes in physicochemical properties that are associated with oxidation need to be considered when choosing analytical approaches. C1 oxidation leads to a sugar that is no longer reducing but instead has an acidic functionality, whereas C4 oxidation leads to products that are inherently labile at high and low pH and that exist in a keto-gemdiol equilibrium that is strongly shifted towards the gemdiol in aqueous solutions. Partial degradation of C4-oxidized products leads to the formation of native products, which could explain why some authors claim to have observed glycoside hydrolase activity for LPMOs. Notably, apparent glycoside hydrolase activity may also be due to small amounts of contaminating glycoside hydrolases since these normally have much higher catalytic rates than LPMOs. The low catalytic turnover rates of LPMOs necessitate the use of sensitive product detection methods, which limits the analytical possibilities considerably. Modern liquid chromatography and mass spectrometry have become essential tools for evaluating LPMO activity and this chapter provides an overview of available methods together with a few novel tools. The methods described constitute a suite of techniques for analyzing oxidized carbohydrate products, which can be applied to LPMOs as well as other carbohydrate-active redox enzymes.


Assuntos
Oxigenases de Função Mista , Polissacarídeos , Oxigenases de Função Mista/metabolismo , Polissacarídeos/metabolismo , Cromatografia Líquida , Espectrometria de Massas , Oxirredução , Celulose/metabolismo , Glicosídeo Hidrolases/metabolismo
5.
Anim Microbiome ; 5(1): 21, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37016467

RESUMO

BACKGROUND: Yeasts are gaining attention as alternative ingredients in aquafeeds. However, the impact of yeast inclusion on modulation of intestinal microbiota of fish fed plant-based ingredients is limited. Thus, the present study investigates the effects of yeast and processing on composition, diversity and predicted metabolic capacity of gut microbiota of Atlantic salmon smolt fed soybean meal (SBM)-based diet. Two yeasts, Cyberlindnera jadinii (CJ) and Wickerhamomyces anomalus (WA), were produced in-house and processed by direct heat-inactivation with spray-drying (ICJ and IWA) or autolyzed at 50 °C for 16 h, followed by spray-drying (ACJ and AWA). In a 42-day feeding experiment, fish were fed one of six diets: a fishmeal (FM)-based diet, a challenging diet with 30% SBM and four other diets containing 30% SBM and 10% of each of the four yeast products (i.e., ICJ, ACJ, IWA and AWA). Microbial profiling of digesta samples was conducted using 16S rRNA gene sequencing, and the predicted metabolic capacities of gut microbiota were determined using genome-scale metabolic models. RESULTS: The microbial composition and predicted metabolic capacity of gut microbiota differed between fish fed FM diet and those fed SBM diet. The digesta of fish fed SBM diet was dominated by members of lactic acid bacteria, which was similar to microbial composition in the digesta of fish fed the inactivated yeasts (ICJ and IWA diets). Inclusion of autolyzed yeasts (ACJ and AWA diets) reduced the richness and diversity of gut microbiota in fish. The gut microbiota of fish fed ACJ diet was dominated by the genus Pediococcus and showed a predicted increase in mucin O-glycan degradation compared with the other diets. The gut microbiota of fish fed AWA diet was highly dominated by the family Bacillaceae. CONCLUSIONS: The present study showed that dietary inclusion of FM and SBM differentially modulate the composition and predicted metabolic capacity of gut microbiota of fish. The inclusion of inactivated yeasts did not alter the modulation caused by SBM-based diet. Fish fed ACJ diet increased relative abundance of Pediococcus, and mucin O-glycan degradation pathway compared with the other diets.

6.
Appl Environ Microbiol ; 89(2): e0174522, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36662572

RESUMO

Rhizobia living as microsymbionts inside nodules have stable access to carbon substrates, but also must survive as free-living bacteria in soil where they are starved for carbon and energy most of the time. Many rhizobia can denitrify, thus switch to anaerobic respiration under low O2 tension using N-oxides as electron acceptors. The cellular machinery regulating this transition is relatively well known from studies under optimal laboratory conditions, while little is known about this regulation in starved organisms. It is, for example, not known if the strong preference for N2O- over NO3- reduction in bradyrhizobia is retained under carbon limitation. Here, we show that starved cultures of a Bradyrhizobium strain with respiration rates 1 to 18% of well-fed cultures reduced all available N2O before touching provided NO3-. These organisms, which carry out complete denitrification, have the periplasmic nitrate reductase NapA but lack the membrane-bound nitrate reductase NarG. Proteomics showed similar levels of NapA and NosZ (N2O reductase), excluding that the lack of NO3- reduction was due to low NapA abundance. Instead, this points to a metabolic-level phenomenon where the bc1 complex, which channels electrons to NosZ via cytochromes, is a much stronger competitor for electrons from the quinol pool than the NapC enzyme, which provides electrons to NapA via NapB. The results contrast the general notion that NosZ activity diminishes under carbon limitation and suggest that bradyrhizobia carrying NosZ can act as strong sinks for N2O under natural conditions, implying that this criterion should be considered in the development of biofertilizers. IMPORTANCE Legume cropped farmlands account for substantial N2O emissions globally. Legumes are commonly inoculated with N2-fixing bacteria, rhizobia, to improve crop yields. Rhizobia belonging to Bradyrhizobium, the microsymbionts of several economically important legumes, are generally capable of denitrification but many lack genes encoding N2O reductase and will be N2O sources. Bradyrhizobia with complete denitrification will instead act as sinks since N2O-reduction efficiently competes for electrons over nitrate reduction in these organisms. This phenomenon has only been demonstrated under optimal conditions and it is not known how carbon substrate limitation, which is the common situation in most soils, affects the denitrification phenotype. Here, we demonstrate that bradyrhizobia retain their strong preference for N2O under carbon starvation. The findings add basic knowledge about mechanisms controlling denitrification and support the potential for developing novel methods for greenhouse gas mitigation based on legume inoculants with the dual capacity to optimize N2 fixation and minimize N2O emission.


Assuntos
Bradyrhizobium , Fabaceae , Bradyrhizobium/genética , Elétrons , Desnitrificação , Oxirredutases/metabolismo , Nitratos/química , Nitrato Redutase , Bactérias/metabolismo , Verduras/metabolismo , Óxido Nitroso , Solo/química
7.
Front Immunol ; 13: 994790, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439103

RESUMO

Cancer immunotherapy represents a promising approach to specifically target and treat cancer. The most common mechanisms by which monoclonal antibodies kill cells include antibody-dependent cell-mediated cytotoxicity, complement-dependent cytotoxicity and apoptosis, but also other mechanisms have been described. 14F7 is an antibody raised against the tumor-associated antigen NeuGc GM3, which was previously reported to kill cancer cells without inducing apoptotic pathways. The antibody was reported to induce giant membrane lesions in tumor cells, with apparent changes in the cytoskeleton. Here, we investigated the effect of humanized 14F7 on HeLa cells using stable isotope labeling with amino acids in cell culture (SILAC) in combination with LC-MS and live cell imaging. 14F7 did not kill the HeLa cells, however, it caused altered protein expression (MS data are available via ProteomeXchange with identifier PXD024320). Several cytoskeletal and nucleic-acid binding proteins were found to be strongly down-regulated in response to antibody treatment, suggesting how 14F7 may induce membrane lesions in cells that contain higher amounts of NeuGc GM3. The altered expression profile identified in this study thus contributes to an improved understanding of the unusual killing mechanism of 14F7.


Assuntos
Neoplasias , Proteômica , Humanos , Células HeLa , Microscopia , Anticorpos Monoclonais
8.
Int J Mol Sci ; 23(3)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35163597

RESUMO

The objective of the current study was to examine the effects of yeasts on intestinal health and transcriptomic profiles from the distal intestine and spleen tissue of Atlantic salmon fed SBM-based diets in seawater. Cyberlindnera jadinii (CJ) and Wickerhamomyces anomalus (WA) yeasts were heat-inactivated with spray-drying (ICJ and IWA) or autolyzed at 50 °C for 16 h (ACJ and AWA), followed by spray-drying. Six diets were formulated, one based on fishmeal (FM), a challenging diet with 30% soybean meal (SBM) and four other diets containing 30% SBM and 10% of each of the four yeast fractions (i.e., ICJ, ACJ, IWA and AWA). The inclusion of CJ yeasts reduced the loss of enterocyte supranuclear vacuolization and reduced the population of CD8α labeled cells present in the lamina propria of fish fed the SBM diet. The CJ yeasts controlled the inflammatory responses of fish fed SBM through up-regulation of pathways related to wound healing and taurine metabolism. The WA yeasts dampened the inflammatory profile of fish fed SBM through down-regulation of pathways related to toll-like receptor signaling, C-lectin receptor, cytokine receptor and signal transduction. This study suggests that the yeast species, Cyberlindnera jadinii and Wickerhamomyces anomalus are novel high-quality protein sources with health-beneficial effects in terms of reducing inflammation associated with feeding plant-based diets to Atlantic salmon.


Assuntos
Ração Animal , Candida/química , Glycine max/química , Intestinos/metabolismo , Saccharomycetales/química , Salmo salar/crescimento & desenvolvimento , Transcriptoma , Animais
9.
ISME J ; 16(2): 580-590, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34489539

RESUMO

Inoculating agricultural soils with nitrous oxide respiring bacteria (NRB) can reduce N2O-emission, but would be impractical as a standalone operation. Here we demonstrate that digestates obtained after biogas production are suitable substrates and vectors for NRB. We show that indigenous NRB in digestates grew to high abundance during anaerobic enrichment under N2O. Gas-kinetics and meta-omic analyses showed that these NRB's, recovered as metagenome-assembled genomes (MAGs), grew by harvesting fermentation intermediates of the methanogenic consortium. Three NRB's were isolated, one of which matched the recovered MAG of a Dechloromonas, deemed by proteomics to be the dominant producer of N2O-reductase in the enrichment. While the isolates harbored genes required for a full denitrification pathway and could thus both produce and sequester N2O, their regulatory traits predicted that they act as N2O sinks in soil, which was confirmed experimentally. The isolates were grown by aerobic respiration in digestates, and fertilization with these NRB-enriched digestates reduced N2O emissions from soil. Our use of digestates for low-cost and large-scale inoculation with NRB in soil can be taken as a blueprint for future applications of this powerful instrument to engineer the soil microbiome, be it for enhancing plant growth, bioremediation, or any other desirable function.


Assuntos
Biocombustíveis , Óxido Nitroso , Agricultura , Bactérias/genética , Bactérias/metabolismo , Desnitrificação , Óxido Nitroso/metabolismo , Solo , Microbiologia do Solo
10.
J Chromatogr A ; 1662: 462691, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-34894418

RESUMO

Research on oligosaccharides, including the complicated product mixtures generated by lytic polysaccharide monooxygenases (LPMOs), is growing at a rapid pace. LPMOs are gaining major interest, and the ability to efficiently and accurately separate and quantify their native and oxidized products chromatographically is essential in furthering our understanding of these oxidative enzymes. Here we present a novel set of methods based on dual electrolytic eluent generation, where the conventional sodium acetate/sodium hydroxide (NaOAc/NaOH) eluents in high-performance anion-exchange chromatography (HPAEC) are replaced by electrolytically-generated potassium methane sulfonate/potassium hydroxide (KMSA/KOH). The new methods separate all compounds of interest within 24-45 min and with high sensitivity; limits of detection and quantification were in the range of 0.0001-0.0032 mM and 0.0002-0.0096 mM, respectively. In addition, an average of 3.5 times improvement in analytical CV was obtained. This chromatographic platform overcomes drawbacks associated with manual preparation of eluents and offers simplified operation and rapid method optimization, with increased precision for less abundant LPMO-derived products.


Assuntos
Celulose , Oxigenases de Função Mista , Celulose/metabolismo , Oxigenases de Função Mista/metabolismo , Oligossacarídeos , Oxirredução , Polissacarídeos
11.
Microbiome ; 9(1): 243, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930457

RESUMO

Through connecting genomic and metabolic information, metaproteomics is an essential approach for understanding how microbiomes function in space and time. The international metaproteomics community is delighted to announce the launch of the Metaproteomics Initiative (www.metaproteomics.org), the goal of which is to promote dissemination of metaproteomics fundamentals, advancements, and applications through collaborative networking in microbiome research. The Initiative aims to be the central information hub and open meeting place where newcomers and experts interact to communicate, standardize, and accelerate experimental and bioinformatic methodologies in this field. We invite the entire microbiome community to join and discuss potential synergies at the interfaces with other disciplines, and to collectively promote innovative approaches to gain deeper insights into microbiome functions and dynamics. Video Abstract.


Assuntos
Microbioma Gastrointestinal , Microbiota , Biologia Computacional , Microbioma Gastrointestinal/genética , Genômica , Microbiota/genética , Proteômica/métodos
12.
Nat Commun ; 12(1): 7305, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34911965

RESUMO

Metaproteomics has matured into a powerful tool to assess functional interactions in microbial communities. While many metaproteomic workflows are available, the impact of method choice on results remains unclear. Here, we carry out a community-driven, multi-laboratory comparison in metaproteomics: the critical assessment of metaproteome investigation study (CAMPI). Based on well-established workflows, we evaluate the effect of sample preparation, mass spectrometry, and bioinformatic analysis using two samples: a simplified, laboratory-assembled human intestinal model and a human fecal sample. We observe that variability at the peptide level is predominantly due to sample processing workflows, with a smaller contribution of bioinformatic pipelines. These peptide-level differences largely disappear at the protein group level. While differences are observed for predicted community composition, similar functional profiles are obtained across workflows. CAMPI demonstrates the robustness of present-day metaproteomics research, serves as a template for multi-laboratory studies in metaproteomics, and provides publicly available data sets for benchmarking future developments.


Assuntos
Bactérias/genética , Proteínas de Bactérias/química , Fezes/microbiologia , Proteômica/métodos , Adulto , Bactérias/classificação , Bactérias/isolamento & purificação , Proteínas de Bactérias/genética , Feminino , Microbioma Gastrointestinal , Humanos , Intestinos/microbiologia , Laboratórios , Espectrometria de Massas , Peptídeos/química , Fluxo de Trabalho
13.
F1000Res ; 10: 103, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34484688

RESUMO

The Earth Microbiome Project (EMP) aided in understanding the role of microbial communities and the influence of collective genetic material (the 'microbiome') and microbial diversity patterns across the habitats of our planet. With the evolution of new sequencing technologies, researchers can now investigate the microbiome and map its influence on the environment and human health. Advances in bioinformatics methods for next-generation sequencing (NGS) data analysis have helped researchers to gain an in-depth knowledge about the taxonomic and genetic composition of microbial communities. Metagenomic-based methods have been the most commonly used approaches for microbiome analysis; however, it primarily extracts information about taxonomic composition and genetic potential of the microbiome under study, lacking quantification of the gene products (RNA and proteins). On the other hand, metatranscriptomics, the study of a microbial community's RNA expression, can reveal the dynamic gene expression of individual microbial populations and the community as a whole, ultimately providing information about the active pathways in the microbiome.  In order to address the analysis of NGS data, the ASaiM analysis framework was previously developed and made available via the Galaxy platform. Although developed for both metagenomics and metatranscriptomics, the original publication demonstrated the use of ASaiM only for metagenomics, while thorough testing for metatranscriptomics data was lacking.  In the current study, we have focused on validating and optimizing the tools within ASaiM for metatranscriptomics data. As a result, we deliver a robust workflow that will enable researchers to understand dynamic functional response of the microbiome in a wide variety of metatranscriptomics studies. This improved and optimized ASaiM-metatranscriptomics (ASaiM-MT) workflow is publicly available via the ASaiM framework, documented and supported with training material so that users can interrogate and characterize metatranscriptomic data, as part of larger meta-omic studies of microbiomes.


Assuntos
Metagenômica , Microbiota , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Metagenoma , Microbiota/genética , Fluxo de Trabalho
15.
Appl Environ Microbiol ; 87(19): e0052921, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34319813

RESUMO

The fish pathogen Aliivibrio (Vibrio) salmonicida LFI1238 is thought to be incapable of utilizing chitin as a nutrient source, since approximately half of the genes representing the chitinolytic pathway are disrupted by insertion sequences. In the present study, we combined a broad set of analytical methods to investigate this hypothesis. Cultivation studies revealed that A. salmonicida grew efficiently on N-acetylglucosamine (GlcNAc) and chitobiose [(GlcNAc)2], the primary soluble products resulting from enzymatic chitin hydrolysis. The bacterium was also able to grow on chitin particles, albeit at a lower rate than on the soluble substrates. The genome of the bacterium contains five disrupted chitinase genes (pseudogenes) and three intact genes encoding a glycoside hydrolase family 18 (GH18) chitinase and two auxiliary activity family 10 (AA10) lytic polysaccharide monooxygenases (LPMOs). Biochemical characterization showed that the chitinase and LPMOs were able to depolymerize both α- and ß-chitin to (GlcNAc)2 and oxidized chitooligosaccharides, respectively. Notably, the chitinase displayed up to 50-fold lower activity than other well-studied chitinases. Deletion of the genes encoding the intact chitinolytic enzymes showed that the chitinase was important for growth on ß-chitin, whereas the LPMO gene deletion variants only showed minor growth defects on this substrate. Finally, proteomic analysis of A. salmonicida LFI1238 growth on ß-chitin showed expression of all three chitinolytic enzymes and, intriguingly, also three of the disrupted chitinases. In conclusion, our results show that A. salmonicida LFI1238 can utilize chitin as a nutrient source and that the GH18 chitinase and the two LPMOs are needed for this ability. IMPORTANCE The ability to utilize chitin as a source of nutrients is important for the survival and spread of marine microbial pathogens in the environment. One such pathogen is Aliivibrio (Vibrio) salmonicida, the causative agent of cold water vibriosis. Due to extensive gene decay, many key enzymes in the chitinolytic pathway have been disrupted, putatively rendering this bacterium incapable of chitin degradation and utilization. In the present study, we demonstrate that A. salmonicida can degrade and metabolize chitin, the most abundant biopolymer in the ocean. Our findings shed new light on the environmental adaption of this fish pathogen.


Assuntos
Aliivibrio salmonicida/metabolismo , Quitina/metabolismo , Acetilglucosamina/metabolismo , Aliivibrio salmonicida/genética , Animais , Quitinases/genética , Quitinases/metabolismo , Dissacarídeos/metabolismo , Peixes , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Transdução de Sinais
16.
J Proteome Res ; 20(8): 4041-4052, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34191517

RESUMO

Chitin is an abundant natural polysaccharide that is hard to degrade because of its crystalline nature and because it is embedded in robust co-polymeric materials containing other polysaccharides, proteins, and minerals. Thus, it is of interest to study the enzymatic machineries of specialized microbes found in chitin-rich environments. We describe a genomic and proteomic analysis of Andreprevotia ripae, a chitinolytic Gram-negative bacterium isolated from an anthill. The genome of A. ripae encodes four secreted family GH19 chitinases of which two were detected and upregulated during growth on chitin. In addition, the genome encodes as many as 25 secreted GH18 chitinases, of which 17 were detected and 12 were upregulated during growth on chitin. Finally, the single lytic polysaccharide monooxygenase (LPMO) was strongly upregulated during growth on chitin. Whereas 66% of the 29 secreted chitinases contained two carbohydrate-binding modules (CBMs), this fraction was 93% (13 out of 14) for the upregulated chitinases, suggesting an important role for these CBMs. Next to an unprecedented multiplicity of upregulated chitinases, this study reveals several chitin-induced proteins that contain chitin-binding CBMs but lack a known catalytic function. These proteins are interesting targets for discovery of enzymes used by nature to convert chitin-rich biomass. The MS proteomic data have been deposited in the PRIDE database with accession number PXD025087.


Assuntos
Betaproteobacteria/enzimologia , Quitinases , Proteômica , Animais , Formigas/microbiologia , Proteínas de Bactérias/genética , Betaproteobacteria/isolamento & purificação , Quitina , Quitinases/genética , Oxigenases de Função Mista/genética , Polissacarídeos
17.
FEMS Microbiol Ecol ; 97(6)2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-33988698

RESUMO

Gammaproteobacteria from the family Endozoicomonadaceae have emerged as widespread associates of dense marine animal communities. Their abundance in coral reefs involves symbiotic relationships and possibly host nutrition. We explored functions encoded in the genome of an uncultured Endozoicomonadaceae 'Candidatus Acestibacter aggregatus' that lives inside gill cells of large Acesta excavata clams in deep-water coral reefs off mid-Norway. The dominance and deep branching lineage of this symbiont was confirmed using 16S rRNA gene sequencing and phylogenomic analysis from shotgun sequencing data. The 4.5 Mb genome binned in this study has a low GC content of 35% and is enriched in transposon and chaperone gene annotations indicating ongoing adaptation. Genes encoding functions potentially involved with the symbiosis include ankyrins, repeat in toxins, secretion and nutritional systems. Complete pathways were identified for the synthesis of eleven amino acids and six B-vitamins. A minimal chitinolytic machinery was indicated from a glycosyl hydrolase GH18 and a lytic polysaccharide monooxygenase LPMO10. Expression of the latter was confirmed using proteomics. Signal peptides for secretion were identified for six polysaccharide degrading enzymes, ten proteases and three lipases. Our results suggest a nutritional symbiosis fuelled by enzymatic products from extracellular degradation processes.


Assuntos
Bivalves , Gammaproteobacteria , Animais , Gammaproteobacteria/genética , Brânquias , Noruega , Nutrientes , Polissacarídeos , RNA Ribossômico 16S/genética , Simbiose
18.
J Proteome Res ; 20(4): 2130-2137, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33683127

RESUMO

metaQuantome is a software suite that enables the quantitative analysis, statistical evaluation. and visualization of mass-spectrometry-based metaproteomics data. In the latest update of this software, we have provided several extensions, including a step-by-step training guide, the ability to perform statistical analysis on samples from multiple conditions, and a comparative analysis of metatranscriptomics data. The training module, accessed via the Galaxy Training Network, will help users to use the suite effectively both for functional as well as for taxonomic analysis. We extend the ability of metaQuantome to now perform multi-data-point quantitative and statistical analyses so that studies with measurements across multiple conditions, such as time-course studies, can be analyzed. With an eye on the multiomics analysis of microbial communities, we have also initiated the use of metaQuantome statistical and visualization tools on outputs from metatranscriptomics data, which complements the metagenomic and metaproteomic analyses already available. For this, we have developed a tool named MT2MQ ("metatranscriptomics to metaQuantome"), which takes in outputs from the ASaiM metatranscriptomics workflow and transforms them so that the data can be used as an input for comparative statistical analysis and visualization via metaQuantome. We believe that these improvements to metaQuantome will facilitate the use of the software for quantitative metaproteomics and metatranscriptomics and will enable multipoint data analysis. These improvements will take us a step toward integrative multiomic microbiome analysis so as to understand dynamic taxonomic and functional responses of these complex systems in a variety of biological contexts. The updated metaQuantome and MT2MQ are open-source software and are available via the Galaxy Toolshed and GitHub.


Assuntos
Microbiota , Proteômica , Espectrometria de Massas , Metagenômica , Software
19.
Sci Rep ; 11(1): 4496, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627754

RESUMO

Yeasts are becoming popular as novel ingredients in fish feeds because of their potential to support better growth and concomitantly ensure good fish health. Here, three species of yeasts (Cyberlindnera jadinii, Blastobotrys adeninivorans and Wickerhamomyces anomalus), grown on wood sugars and hydrolysates of chicken were subjected to two down-stream processes, either direct heat-inactivation or autolysis, and the feed potential of the resulting yeast preparations was assessed through a feeding trial with Atlantic salmon fry. Histological examination of distal intestine based on widening of lamina propria, showed that autolyzed W. anomalus was effective in alleviating mild intestinal enteritis, while only limited effects were observed for other yeasts. Our results showed that the functionality of yeast in counteracting intestinal enteritis in Atlantic salmon was dependent on both the type of yeast and the down-stream processing method, and demonstrated that C. jadinii and W. anomalus have promising effects on gut health of Atlantic salmon.


Assuntos
Salmo salar/fisiologia , Leveduras/química , Ração Animal , Animais , Aquicultura/métodos , Galinhas , Enterite/fisiopatologia , Mucosa Intestinal/fisiologia
20.
Nat Commun ; 12(1): 1230, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33623002

RESUMO

The recently discovered lytic polysaccharide monooxygenases (LPMOs), which cleave polysaccharides by oxidation, have been associated with bacterial virulence, but supporting functional data is scarce. Here we show that CbpD, the LPMO of Pseudomonas aeruginosa, is a chitin-oxidizing virulence factor that promotes survival of the bacterium in human blood. The catalytic activity of CbpD was promoted by azurin and pyocyanin, two redox-active virulence factors also secreted by P. aeruginosa. Homology modeling, molecular dynamics simulations, and small angle X-ray scattering indicated that CbpD is a monomeric tri-modular enzyme with flexible linkers. Deletion of cbpD rendered P. aeruginosa unable to establish a lethal systemic infection, associated with enhanced bacterial clearance in vivo. CbpD-dependent survival of the wild-type bacterium was not attributable to dampening of pro-inflammatory responses by CbpD ex vivo or in vivo. Rather, we found that CbpD attenuates the terminal complement cascade in human serum. Studies with an active site mutant of CbpD indicated that catalytic activity is crucial for virulence function. Finally, profiling of the bacterial and splenic proteomes showed that the lack of this single enzyme resulted in substantial re-organization of the bacterial and host proteomes. LPMOs similar to CbpD occur in other pathogens and may have similar immune evasive functions.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Oxigenases de Função Mista/metabolismo , Polissacarídeos/metabolismo , Infecções por Pseudomonas/enzimologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/patogenicidade , Animais , Proteínas de Bactérias/química , Proteínas de Transporte/química , Morte Celular , Proteínas do Sistema Complemento/metabolismo , Humanos , Camundongos , Viabilidade Microbiana , Oxirredução , Domínios Proteicos , Proteoma/metabolismo , Proteômica , Infecções por Pseudomonas/sangue , Especificidade por Substrato , Transcrição Gênica , Virulência , Fatores de Virulência/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...