Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
medRxiv ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39006410

RESUMO

POPDC2 encodes for the Popeye domain-containing protein 2 which has an important role in cardiac pacemaking and conduction, due in part to its cAMP-dependent binding and regulation of TREK-1 potassium channels. Loss of Popdc2 in mice results in sinus pauses and bradycardia and morpholino knockdown of popdc2 in zebrafish results in atrioventricular (AV) block. We identified bi-allelic variants in POPDC2 in 4 families that presented with a phenotypic spectrum consisting of sinus node dysfunction, AV conduction defects and hypertrophic cardiomyopathy. Using homology modelling we show that the identified POPDC2 variants are predicted to diminish the ability of POPDC2 to bind cAMP. In in vitro electrophysiological studies we demonstrated that, while co-expression of wild-type POPDC2 with TREK-1 increased TREK-1 current density, POPDC2 variants found in the patients failed to increase TREK-1 current density. While patient muscle biopsy did not show clear myopathic disease, it showed significant reduction of the expression of both POPDC1 and POPDC2, suggesting that stability and/or membrane trafficking of the POPDC1-POPDC2 complex is impaired by pathogenic variants in any of the two proteins. Single-cell RNA sequencing from human hearts demonstrated that co-expression of POPDC1 and 2 was most prevalent in AV node, AV node pacemaker and AV bundle cells. Sinoatrial node cells expressed POPDC2 abundantly, but expression of POPDC1 was sparse. Together, these results concur with predisposition to AV node disease in humans with loss-of-function variants in POPDC1 and POPDC2 and presence of sinus node disease in POPDC2, but not in POPDC1 related disease in human. Using population-level genetic data of more than 1 million individuals we showed that none of the familial variants were associated with clinical outcomes in heterozygous state, suggesting that heterozygous family members are unlikely to develop clinical manifestations and therefore might not necessitate clinical follow-up. Our findings provide evidence for POPDC2 as the cause of a novel Mendelian autosomal recessive cardiac syndrome, consistent with previous work showing that mice and zebrafish deficient in functional POPDC2 display sinus and AV node dysfunction.

2.
Neurology ; 98(12): e1216-e1225, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35101906

RESUMO

BACKGROUND AND OBJECTIVES: Multiple factors have been found to contribute to the high risk of epilepsy in infants with tuberous sclerosis complex (TSC), including evolution of EEG abnormalities, TSC gene variant, and MRI characteristics. The aim of this prospective multicenter study was to identify early MRI biomarkers of epilepsy in infants with TSC aged <6 months and before seizure onset, and associate these MRI biomarkers with neurodevelopmental outcomes at 2 years of age. The study was part of the EPISTOP project. METHODS: We evaluated brain MRIs performed in infants younger than 6 months with TSC. We used harmonized MRI protocols across centers and children were monitored closely with neuropsychological evaluation and serial video EEG. MRI characteristics, defined as tubers, radial migration lines, white matter abnormalities, cysts, calcifications, subependymal nodules (SEN), and subependymal giant cell astrocytoma (SEGA), were visually evaluated and lesions were detected semiautomatically. Lesion to brain volume ratios were calculated and associated with epilepsy and neurodevelopmental outcomes at 2 years. RESULTS: Lesions were assessed on MRIs from 77 infants with TSC; 62 MRIs were sufficient for volume analysis. The presence of tubers and higher tuber-brain ratios were associated with the development of clinical seizures, independently of TSC gene variation and preventive treatment. Furthermore, higher tuber-brain ratios were associated with lower cognitive and motor development quotients at 2 years, independently of TSC gene variation and presence of epilepsy. DISCUSSION: In infants with TSC, there is a significant association between characteristic TSC lesions detected on early brain MRI and development of clinical seizures, as well as neurodevelopmental outcomes in the first 2 years of life. According to our results, early brain MRI findings may guide clinical care for young children with TSC. CLASSIFICATION OF EVIDENCE: This study provides Class I evidence that in infants with TSC, there is a significant association between characteristic TSC lesions on early brain MRI and the development of clinical seizures and neurodevelopmental outcomes in the first 2 years of life.


Assuntos
Epilepsia , Esclerose Tuberosa , Criança , Pré-Escolar , Epilepsia/complicações , Epilepsia/etiologia , Humanos , Lactente , Imageamento por Ressonância Magnética , Estudos Prospectivos , Convulsões/complicações , Esclerose Tuberosa/complicações , Esclerose Tuberosa/diagnóstico por imagem , Esclerose Tuberosa/genética
3.
J Pediatr Surg ; 55(12): 2783-2786, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32156426

RESUMO

BACKGROUND: Anterior cutaneous nerve entrapment syndrome (ACNES) has been described as a possible cause for chronic pain in the pediatric population. However, the exact pathophysiology of ACNES is unknown. It may be caused by compression or traction of cutaneous nerve branches of intercostal nerves, or it may be the result of an infection. Therefore, we present histopathological evidence to determine the pathophysiology of ACNES. METHODS: A total of seven pediatric patients underwent a neurectomy for ACNES. All specimens were sent for histopathological evaluation, including immunohistochemical staining, to evaluate if there were any signs of infection, inflammation or compression. RESULTS: Seven out of seven (100%) histopathological specimens showed non-specific nerve degeneration. Immunohistochemical evaluation showed there were several CD68-positive macrophages present in the specimens. Four out of seven (57%) specimens showed the presence of a few CD3-positive T-cells, however, this was not suggestive for inflammation or infection. CONCLUSION: Our study supports the hypothesis that ACNES is caused by compression of the nerves rather than inflammation. LEVEL OF EVIDENCE: III.


Assuntos
Síndromes de Compressão Nervosa , Dor Abdominal , Criança , Dor Crônica , Humanos , Nervos Intercostais , Síndromes de Compressão Nervosa/etiologia , Síndromes de Compressão Nervosa/cirurgia , Medição da Dor
4.
J Infect Dis ; 215(8): 1197-1206, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28199701

RESUMO

Hepatitis E virus (HEV), as a hepatotropic virus, is supposed to exclusively infect the liver and only cause hepatitis. However, a broad range of extrahepatic manifestations (in particular, idiopathic neurological disorders) have been recently reported in association with its infection. In this study, we have demonstrated that various human neural cell lines (embryonic stem cell-derived neural lineage cells) induced pluripotent stem cell-derived human neurons and primary mouse neurons are highly susceptible to HEV infection. Treatment with interferon-α or ribavirin, the off-label antiviral drugs for chronic hepatitis E, exerted potent antiviral activities against HEV infection in neural cells. More importantly, in mice and monkey peripherally inoculated with HEV particles, viral RNA and protein were detected in brain tissues. Finally, patients with HEV-associated neurological disorders shed the virus into cerebrospinal fluid, indicating a direct infection of their nervous system. Thus, HEV is neurotropic in vitro, and in mice, monkeys, and possibly humans. These results challenge the dogma of HEV as a pure hepatotropic virus and suggest that HEV infection should be considered in the differential diagnosis of idiopathic neurological disorders.


Assuntos
Encéfalo/virologia , Vírus da Hepatite E/patogenicidade , Hepatite E/patologia , Neurônios/virologia , Adulto , Idoso , Animais , Antivirais/farmacologia , Encéfalo/patologia , Linhagem Celular Tumoral , Líquido Cefalorraquidiano/virologia , Feminino , Síndrome de Guillain-Barré/virologia , Hepatite E/tratamento farmacológico , Humanos , Interferon-alfa/farmacologia , Fígado/patologia , Fígado/virologia , Macaca mulatta , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Neurônios/patologia , RNA Viral/análise , Ribavirina/farmacologia , Replicação Viral/efeitos dos fármacos , Eliminação de Partículas Virais
5.
J Clin Invest ; 125(11): 4305-15, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26485287

RESUMO

Angelman syndrome (AS) is a severe neurological disorder that is associated with prominent movement and balance impairments that are widely considered to be due to defects of cerebellar origin. Here, using the cerebellar-specific vestibulo-ocular reflex (VOR) paradigm, we determined that cerebellar function is only mildly impaired in the Ube3am-/p+ mouse model of AS. VOR phase-reversal learning was singularly impaired in these animals and correlated with reduced tonic inhibition between Golgi cells and granule cells. Purkinje cell physiology, in contrast, was normal in AS mice as shown by synaptic plasticity and spontaneous firing properties that resembled those of controls. Accordingly, neither VOR phase-reversal learning nor locomotion was impaired following selective deletion of Ube3a in Purkinje cells. However, genetic normalization of αCaMKII inhibitory phosphorylation fully rescued locomotor deficits despite failing to improve cerebellar learning in AS mice, suggesting extracerebellar circuit involvement in locomotor learning. We confirmed this hypothesis through cerebellum-specific reinstatement of Ube3a, which ameliorated cerebellar learning deficits but did not rescue locomotor deficits. This double dissociation of locomotion and cerebellar phenotypes strongly suggests that the locomotor deficits of AS mice do not arise from impaired cerebellar cortex function. Our results provide important insights into the etiology of the motor deficits associated with AS.


Assuntos
Síndrome de Angelman/fisiopatologia , Cerebelo/patologia , Modelos Animais de Doenças , Transtornos Neurológicos da Marcha/genética , Ubiquitina-Proteína Ligases/deficiência , Síndrome de Angelman/patologia , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Cerebelo/fisiopatologia , Feminino , Transtornos Neurológicos da Marcha/fisiopatologia , Humanos , Deficiências da Aprendizagem/genética , Deficiências da Aprendizagem/fisiopatologia , Locomoção , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Processamento de Proteína Pós-Traducional , Desempenho Psicomotor , Células de Purkinje/patologia , Células de Purkinje/fisiologia , Reflexo Vestíbulo-Ocular , Teste de Desempenho do Rota-Rod , Ubiquitina-Proteína Ligases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...