Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells Dev ; 177: 203898, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38103869

RESUMO

The basement membrane (BM) demarcating epithelial tissues undergoes rapid expansion to accommodate tissue growth and morphogenesis during embryonic development. To facilitate the secretion of bulky BM proteins, their mRNAs are polarized basally in the follicle epithelial cells of the Drosophila egg chamber to position their sites of production close to their deposition. In contrast, we observed the apical rather than basal polarization of all major BM mRNAs in the outer epithelial cells adjacent to the BM of mouse embryonic salivary glands using single-molecule RNA fluorescence in situ hybridization (smFISH). Moreover, electron microscopy and immunofluorescence revealed apical polarization of both the endoplasmic reticulum (ER) and Golgi apparatus, indicating that the site of BM component production was opposite to the site of deposition. At the apical side, BM mRNAs colocalized with ER, suggesting they may be co-translationally tethered. After microtubule inhibition, the BM mRNAs and ER became uniformly distributed rather than apically polarized, but they remained unchanged after inhibiting myosin II, ROCK, or F-actin, or after enzymatic disruption of the BM. Because Rab6 is generally required for Golgi-to-plasma membrane trafficking of BM components, we used lentivirus to express an mScarlet-tagged Rab6a in salivary gland epithelial cultures to visualize vesicle trafficking dynamics. We observed extensive bidirectional vesicle movements between Golgi at the apical side and the basal plasma membrane adjacent to the BM. Moreover, we showed that these vesicle movements depend on the microtubule motor kinesin-1 because very few vesicles remained motile after treatment with kinesore to compete for cargo-binding sites on kinesin-1. Overall, our work highlights the diverse strategies that different organisms use to secrete bulky matrix proteins: while Drosophila follicle epithelial cells strategically place their sites of BM protein production close to their deposition, mouse embryonic epithelial cells place their sites of production at the opposite end. Instead of spatial proximity, they use the microtubule cytoskeleton to mediate this organization as well as for the apical-to-basal transport of BM proteins.


Assuntos
Cinesinas , Microtúbulos , Animais , Camundongos , Membrana Basal/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Hibridização in Situ Fluorescente , Microtúbulos/genética , Células Epiteliais/metabolismo , Drosophila/genética , Drosophila/metabolismo , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo
2.
Platelets ; 34(1): 2264978, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37933490

RESUMO

Platelets contribute to COVID-19 clinical manifestations, of which microclotting in the pulmonary vasculature has been a prominent symptom. To investigate the potential diagnostic contributions of overall platelet morphology and their α-granules and mitochondria to the understanding of platelet hyperactivation and micro-clotting, we undertook a 3D ultrastructural approach. Because differences might be small, we used the high-contrast, high-resolution technique of focused ion beam scanning EM (FIB-SEM) and employed deep learning computational methods to evaluate nearly 600 individual platelets and 30 000 included organelles within three healthy controls and three severely ill COVID-19 patients. Statistical analysis reveals that the α-granule/mitochondrion-to-plateletvolume ratio is significantly greater in COVID-19 patient platelets indicating a denser packing of organelles, and a more compact platelet. The COVID-19 patient platelets were significantly smaller -by 35% in volume - with most of the difference in organelle packing density being due to decreased platelet size. There was little to no 3D ultrastructural evidence for differential activation of the platelets from COVID-19 patients. Though limited by sample size, our studies suggest that factors outside of the platelets themselves are likely responsible for COVID-19 complications. Our studies show how deep learning 3D methodology can become the gold standard for 3D ultrastructural studies of platelets.


COVID-19 patients exhibit a range of symptoms including microclotting. Clotting is a complex process involving both circulating proteins and platelets, a cell within the blood. Increased clotting is suggestive of an increased level of platelet activation. If this were true, we reasoned that parts of the platelet involved in the release of platelet contents during clotting would have lost their content and appear as expanded, empty "ghosts." To test this, we drew blood from severely ill COVID-19 patients and compared the platelets within the blood draws to those from healthy volunteers. All procedures were done under careful attention to biosafety and approved by health authorities. We looked within the platelets for empty ghosts by the high magnification technique of electron microscopy. To count the ghosts, we developed new computer software. In the end, we found little difference between the COVID patient platelets and the healthy donor platelets. The results suggest that circulating proteins outside of the platelet are more important to the strong clotting response. The software developed will be used to analyze other disease states.


Assuntos
COVID-19 , Aprendizado Profundo , Humanos , RNA Viral , SARS-CoV-2 , Plaquetas/ultraestrutura , Organelas
3.
Res Pract Thromb Haemost ; 7(2): 100058, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36865905

RESUMO

Background: Puncture wounding is a longstanding challenge to human health for which understanding is limited, in part, by a lack of detailed morphological data on how the circulating platelet capture to the vessel matrix leads to sustained, self-limiting platelet accumulation. Objectives: The objective of this study was to produce a paradigm for self-limiting thrombus growth in a mouse jugular vein model. Methods: Data mining of advanced electron microscopy images was performed from authors' laboratories. Results: Wide-area transmission electron mcrographs revealed initial platelet capture to the exposed adventitia resulted in localized patches of degranulated, procoagulant-like platelets. Platelet activation to a procoagulant state was sensitive to dabigatran, a direct-acting PAR receptor inhibitor, but not to cangrelor, a P2Y12 receptor inhibitor. Subsequent thrombus growth was sensitive to both cangrelor and dabigatran and sustained by the capture of discoid platelet strings first to collagen-anchored platelets and later to loosely adherent peripheral platelets. Spatial examination indicated that staged platelet activation resulted in a discoid platelet tethering zone that was pushed progressively outward as platelets converted from one activation state to another. As thrombus growth slowed, discoid platelet recruitment became rare and loosely adherent intravascular platelets failed to convert to tightly adherent platelets. Conclusions: In summary, the data support a model that we term Capture and Activate, in which the initial high platelet activation is directly linked to the exposed adventitia, all subsequent tethering of discoid platelets is to loosely adherent platelets that convert to tightly adherent platelets, and self-limiting, intravascular platelet activation over time is the result of decreased signaling intensity.

4.
Front Synaptic Neurosci ; 14: 1004154, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36186623

RESUMO

A-kinase anchoring protein 79-human/150-rodent (AKAP79/150) organizes signaling proteins to control synaptic plasticity. AKAP79/150 associates with the plasma membrane and endosomes through its N-terminal domain that contains three polybasic regions and two Cys residues that are reversibly palmitoylated. Mutations abolishing palmitoylation (AKAP79/150 CS) reduce its endosomal localization and association with the postsynaptic density (PSD). Here we combined advanced light and electron microscopy (EM) to characterize the effects of AKAP79/150 palmitoylation on its postsynaptic nanoscale organization, trafficking, and mobility in hippocampal neurons. Immunogold EM revealed prominent extrasynaptic membrane AKAP150 labeling with less labeling at the PSD. The label was at greater distances from the spine membrane for AKAP150 CS than WT in the PSD but not in extra-synaptic locations. Immunogold EM of GFP-tagged AKAP79 WT showed that AKAP79 adopts a vertical, extended conformation at the PSD with its N-terminus at the membrane, in contrast to extrasynaptic locations where it adopts a compact or open configurations of its N- and C-termini with parallel orientation to the membrane. In contrast, GFP-tagged AKAP79 CS was displaced from the PSD coincident with disruption of its vertical orientation, while proximity and orientation with respect to the extra-synaptic membrane was less impacted. Single-molecule localization microscopy (SMLM) revealed a heterogeneous distribution of AKAP150 with distinct high-density, nano-scale regions (HDRs) overlapping the PSD but more prominently located in the extrasynaptic membrane for WT and the CS mutant. Thick section scanning transmission electron microscopy (STEM) tomography revealed AKAP150 immunogold clusters similar in size to HDRs seen by SMLM and more AKAP150 labeled endosomes in spines for WT than for CS, consistent with the requirement for AKAP palmitoylation in endosomal trafficking. Hidden Markov modeling of single molecule tracking data revealed a bound/immobile fraction and two mobile fractions for AKAP79 in spines, with the CS mutant having shorter dwell times and faster transition rates between states than WT, suggesting that palmitoylation stabilizes individual AKAP molecules in various spine subpopulations. These data demonstrate that palmitoylation fine tunes the nanoscale localization, mobility, and trafficking of AKAP79/150 in dendritic spines, which might have profound effects on its regulation of synaptic plasticity.

5.
Sci Rep ; 11(1): 23343, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34857844

RESUMO

Placozoa is a phylum of non-bilaterian marine animals. These small, flat organisms adhere to the substrate via their densely ciliated ventral epithelium, which mediates mucociliary locomotion and nutrient uptake. They have only six morphological cell types, including one, fiber cells, for which functional data is lacking. Fiber cells are non-epithelial cells with multiple processes. We used electron and light microscopic approaches to unravel the roles of fiber cells in Trichoplax adhaerens, a representative member of the phylum. Three-dimensional reconstructions of serial sections of Trichoplax showed that each fiber cell is in contact with several other cells. Examination of fiber cells in thin sections and observations of live dissociated fiber cells demonstrated that they phagocytose cell debris and bacteria. In situ hybridization confirmed that fiber cells express genes involved in phagocytic activity. Fiber cells also are involved in wound healing as evidenced from microsurgery experiments. Based on these observations we conclude that fiber cells are multi-purpose macrophage-like cells. Macrophage-like cells have been described in Porifera, Ctenophora, and Cnidaria and are widespread among Bilateria, but our study is the first to show that Placozoa possesses this cell type. The phylogenetic distribution of macrophage-like cells suggests that they appeared early in metazoan evolution.


Assuntos
Evolução Biológica , Citofagocitose , Imunidade Inata , Placozoa/imunologia , Rodófitas/imunologia , Cicatrização , Animais , Filogenia
6.
Commun Biol ; 4(1): 1090, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34531522

RESUMO

Primary hemostasis results in a platelet-rich thrombus that has long been assumed to form a solid plug. Unexpectedly, our 3-dimensional (3D) electron microscopy of mouse jugular vein puncture wounds revealed that the resulting thrombi were structured about localized, nucleated platelet aggregates, pedestals and columns, that produced a vaulted thrombus capped by extravascular platelet adherence. Pedestal and column surfaces were lined by procoagulant platelets. Furthermore, early steps in thrombus assembly were sensitive to P2Y12 inhibition and late steps to thrombin inhibition. Based on these results, we propose a Cap and Build, puncture wound paradigm that should have translational implications for bleeding control and hemostasis.


Assuntos
Plaquetas/fisiologia , Hemostasia/fisiologia , Punções/efeitos adversos , Trombose/fisiopatologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Trombose/etiologia
7.
iScience ; 24(8): 102901, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34401678

RESUMO

In the finely regulated process of mammalian erythropoiesis, the path of the labile iron pool into mitochondria for heme production is not well understood. Existing models for erythropoiesis do not include a central role for the ubiquitous iron storage protein ferritin; one model proposes that incoming endosomal Fe3+ bound to transferrin enters the cytoplasm through an ion transporter after reduction to Fe2+ and is taken up into mitochondria through mitoferrin-1 transporter. Here, we apply a dual three-dimensional imaging and spectroscopic technique, based on scanned electron probes, to measure Fe3+ in ex vivo human hematopoietic stem cells. After seven days in culture, we observe cells displaying a highly specialized architecture with anchored clustering of mitochondria and massive accumulation of nanoparticles containing high iron concentrations localized to lysosomal storage depots, identified as ferritin. We hypothesize that lysosomal ferritin iron depots enable continued heme production after expulsion of most of the cellular machinery.

8.
Biomater Sci ; 9(7): 2584-2597, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33595023

RESUMO

It is widely accepted that a small particle size and rough surface can enhance tumor tissue accumulation and tumor cellular uptake of nanoparticles, respectively. Herein, sub-50 nm urchin-inspired disulfide bond-bridged mesoporous organosilica nanoparticles (UMONs) featured with a spiky surface and glutathione (GSH)-responsive biodegradability were successfully synthesized by a facile one-pot biphasic synthesis strategy for enhanced cellular internalization and tumor accumulation. l-Arginine (LA) is encapsulated into the mesopores of UMONs, whose outer surface is capped with the gatekeeper of ultrasmall gold nanoparticles, i.e., UMONs-LA-Au. On the one hand, the mild acidity-activated uncapping of ultrasmall gold can realize a tumor microenvironment (TME)-responsive release of LA. On the other hand, the unique natural glucose oxidase (GOx)-mimicking catalytic activity of ultrasmall gold can catalyze the decomposition of intratumoral glucose to produce acidic hydrogen peroxide (H2O2) and gluconic acid. Remarkably, these products can not only further facilitate the release of LA, but also catalyze the LA-H2O2 reaction for an increased nitric oxide (NO) yield, which realizes synergistic catalysis-enhanced NO gas therapy for tumor eradication. The judiciously fabricated UMONs-LA-Au present a paradigm of TME-responsive nanoplatforms for both enhanced cellular uptake and tumor-specific precision cascaded therapy, which broadens the range of practical biomedical applications and holds a significant promise for the clinical translation of silica-based nanotheranostics.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Ouro , Peróxido de Hidrogênio , Tamanho da Partícula , Dióxido de Silício
9.
Sci Rep ; 11(1): 2561, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33510185

RESUMO

Biologists who use electron microscopy (EM) images to build nanoscale 3D models of whole cells and their organelles have historically been limited to small numbers of cells and cellular features due to constraints in imaging and analysis. This has been a major factor limiting insight into the complex variability of cellular environments. Modern EM can produce gigavoxel image volumes containing large numbers of cells, but accurate manual segmentation of image features is slow and limits the creation of cell models. Segmentation algorithms based on convolutional neural networks can process large volumes quickly, but achieving EM task accuracy goals often challenges current techniques. Here, we define dense cellular segmentation as a multiclass semantic segmentation task for modeling cells and large numbers of their organelles, and give an example in human blood platelets. We present an algorithm using novel hybrid 2D-3D segmentation networks to produce dense cellular segmentations with accuracy levels that outperform baseline methods and approach those of human annotators. To our knowledge, this work represents the first published approach to automating the creation of cell models with this level of structural detail.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Algoritmos , Imageamento Tridimensional , Aprendizado de Máquina , Microscopia Eletrônica
10.
Platelets ; 32(1): 97-104, 2021 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-32000578

RESUMO

The canalicular system (CS) has been defined as: 1) an inward, invaginated membrane connector that supports entry into and exit from the platelet; 2) a static structure stable during platelet isolation; and 3) the major source of plasma membrane (PM) for surface area expansion during activation. Recent analysis from STEM tomography and serial block face electron microscopy has challenged the relative importance of CS as the route for granule secretion. Here, We used 3D ultrastructural imaging to reexamine the CS in mouse platelets by generating high-resolution 3D reconstructions to test assumptions 2 and 3. Qualitative and quantitative analysis of whole platelet reconstructions, obtained from immediately fixed or washed platelets fixed post-washing, indicated that CS, even in the presence of activation inhibitors, reorganized during platelet isolation to generate a more interconnected network. Further, CS redistribution into the PM at different times, post-activation, appeared to account for only about half the PM expansion seen in thrombin-activated platelets, in vitro, suggesting that CS reorganization is not sufficient to serve as a dominant membrane reservoir for activated platelets. In sum, our analysis highlights the need to revisit past assumptions about the platelet CS to better understand how this membrane system contributes to platelet function.


Assuntos
Imageamento Tridimensional/métodos , Ativação Plaquetária/fisiologia , Animais , Humanos , Camundongos
11.
Platelets ; 32(5): 608-617, 2021 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-32815431

RESUMO

Mice and mouse platelets are major experimental models for hemostasis and thrombosis; however, important physiological data from this model has received little to no quantitative, 3D ultrastructural analysis. We used state-of-the-art, serial block imaging scanning electron microscopy (SBF-SEM, nominal Z-step size was 35 nm) to image resting platelets from C57BL/6 mice. α-Granules were identified morphologically and rendered in 3D space. The quantitative analysis revealed that mouse α-granules typically had a variable, elongated, rod shape, different from the round/ovoid shape of human α-granules. This variation in length was confirmed qualitatively by higher-resolution, focused ion beam (FIB) SEM at a nominal 5 nm Z-step size. The unexpected α-granule shape raises novel questions regarding α-granule biogenesis and dynamics. Does the variation arise at the level of the megakaryocyte and α-granule biogenesis or from differences in α-granule dynamics and organelle fusion/fission events within circulating platelets? Further quantitative analysis revealed that the two major organelles in circulating platelets, α-granules and mitochondria, displayed a stronger linear relationship between organelle number/volume and platelet size, i.e., a scaling in number and volume to platelet size, than found in human platelets suggestive of a tighter mechanistic regulation of their inclusion during platelet biogenesis. In conclusion, the overall spatial arrangement of organelles within mouse platelets was similar to that of resting human platelets, with mouse α-granules clustered closely together with little space for interdigitation of other organelles.


Assuntos
Plaquetas/ultraestrutura , Imageamento Tridimensional/métodos , Animais , Humanos , Camundongos
12.
Res Pract Thromb Haemost ; 4(1): 72-85, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31989087

RESUMO

BACKGROUND: State-of-the-art 3-dimensional (3D) electron microscopy approaches provide a new standard for the visualization of human platelet ultrastructure. Application of these approaches to platelets rapidly fixed prior to purification to minimize activation should provide new insights into resting platelet ultrastructure. OBJECTIVES: Our goal was to determine the 3D organization of α-granules, dense granules, mitochondria, and canalicular system in resting human platelets and map their spatial relationships. METHODS: We used serial block face-scanning electron microscopy images to render the 3D ultrastructure of α-granules, dense granules, mitochondria, canalicular system, and plasma membrane for 30 human platelets, 10 each from 3 donors. α-Granule compositional data were assessed by sequential, serial section cryo-immunogold electron microscopy and by immunofluorescence (structured illumination microscopy). RESULTS AND CONCLUSIONS: α-Granule number correlated linearly with platelet size, while dense granule and mitochondria number had little correlation with platelet size. For all subcellular compartments, individual organelle parameters varied considerably and organelle volume fraction had little correlation with platelet size. Three-dimensional data from 30 platelets indicated only limited spatial intermixing of the different organelle classes. Interestingly, almost 70% of α-granules came within ≤35 nm of each other, a distance associated in other cell systems with protein-mediated contact sites. Size and shape analysis of the 1488 α-granules analyzed revealed no more variation than that expected for a Gaussian distribution. Protein distribution data indicated that all α-granules likely contained the same major set of proteins, albeit at varying amounts and varying distribution within the granule matrix.

13.
J Am Chem Soc ; 141(37): 14687-14698, 2019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-31466436

RESUMO

Phototheranostics refers to advanced photonics-mediated theranostic methods for cancer and includes imaging-guided photothermal/chemotherapy, photothermal/photodynamic therapy, and photodynamic/chemotherapy, which are expected to provide a paradigm of modern precision medicine. In this regard, various phototheranostic drug delivery systems with excellent photonic performance, controlled drug delivery/release, and precise photoimaging guidance have been developed. In this study, we reported a special "in situ framework growth" method to synthesize novel phototheranostic hollow mesoporous nanoparticles by ingenious hybridization of perylene diimide (PDI) within the framework of small-sized hollow mesoporous organosilica (HMO). The marriage of PDI and HMO endowed the phototheranostic silica nanoparticles (HMPDINs) with largely amplified fluorescence and photoacoustic signals, which can be used for enhanced fluorescence and photoacoustic imaging. The organosilica shell can be chemically chelated with isotope 64Cu for positron emission tomography imaging. Moreover, in situ polymer growth was introduced in the hollow structure of the HMPDINs to produce thermosensitive polymer (TP) in the cavity of HMPDINs to increase the loading capacity and prevent unexpected leakage of the hydrophobic drug SN38. Furthermore, the framework-hybridized PDI generated heat under near-infrared laser irradiation to trigger the deformation of TP for controlled drug release in the tumor region. The fabricated hybrid nanomedicine with organic-inorganic characteristic not only increases the cancer theranostic efficacy but also offers an attractive solution for designing powerful theranostic platforms.


Assuntos
Imidas/química , Nanopartículas/química , Compostos de Organossilício/química , Perileno/química , Medicina de Precisão , Nanomedicina Teranóstica , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Nus , Polimerização , Porosidade , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Nat Commun ; 10(1): 1241, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30886142

RESUMO

The success of radiotherapy relies on tumor-specific delivery of radiosensitizers to attenuate hypoxia resistance. Here we report an ammonia-assisted hot water etching strategy for the generic synthesis of a library of small-sized (sub-50 nm) hollow mesoporous organosilica nanoparticles (HMONs) with mono, double, triple, and even quadruple framework hybridization of diverse organic moieties by changing only the introduced bissilylated organosilica precursors. The biodegradable thioether-hybridized HMONs are chosen for efficient co-delivery of tert-butyl hydroperoxide (TBHP) and iron pentacarbonyl (Fe(CO)5). Distinct from conventional RT, radiodynamic therapy (RDT) is developed by taking advantage of X-ray-activated peroxy bond cleavage within TBHP to generate •OH, which can further attack Fe(CO)5 to release CO molecules for gas therapy. Detailed in vitro and in vivo studies reveal the X-ray-activated cascaded release of •OH and CO molecules from TBHP/Fe(CO)5 co-loaded PEGylated HMONs without reliance on oxygen, which brings about remarkable destructive effects against both normoxic and hypoxic cancers.


Assuntos
Antineoplásicos/administração & dosagem , Quimiorradioterapia/métodos , Portadores de Fármacos/síntese química , Liberação Controlada de Fármacos/efeitos da radiação , Neoplasias/terapia , Animais , Monóxido de Carbono/química , Feminino , Células Hep G2 , Humanos , Radical Hidroxila/química , Radical Hidroxila/efeitos da radiação , Compostos de Ferro/administração & dosagem , Camundongos , Camundongos Nus , Nanopartículas/química , Compostos de Organossilício/síntese química , Tamanho da Partícula , Polietilenoglicóis/química , Porosidade , Células RAW 264.7 , Resultado do Tratamento , Raios X , Ensaios Antitumorais Modelo de Xenoenxerto , terc-Butil Hidroperóxido/administração & dosagem , terc-Butil Hidroperóxido/efeitos da radiação
15.
Adv Mater ; 31(19): e1900401, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30920710

RESUMO

2D nanomaterials have attracted broad interest in the field of biomedicine owing to their large surface area, high drug-loading capacity, and excellent photothermal conversion. However, few studies report their "enzyme-like" catalytic performance because it is difficult to prepare enzymatic nanosheets with small size and ultrathin thickness by current synthetic protocols. Herein, a novel one-step wet-chemical method is first proposed for protein-directed synthesis of 2D MnO2 nanosheets (M-NSs), in which the size and thickness can be easily adjusted by the protein dosage. Then, a unique sono-chemical approach is introduced for surface functionalization of the M-NSs with high dispersity/stability as well as metal-cation-chelating capacity, which can not only chelate 64 Cu radionuclides for positron emission tomography (PET) imaging, but also capture the potentially released Mn2+ for enhanced biosafety. Interestingly, the resulting M-NS exhibits excellent enzyme-like activity to catalyze the oxidation of glucose, which represents an alternative paradigm of acute glucose oxidase for starving cancer cells and sensitizing them to thermal ablation. Featured with outstanding phototheranostic performance, the well-designed M-NS can achieve effective photoacoustic-imaging-guided synergistic starvation-enhanced photothermal therapy. This study is expected to establish a new enzymatic phototheranostic paradigm based on small-sized and ultrathin M-NSs, which will broaden the application of 2D nanomaterials.


Assuntos
Compostos de Manganês/química , Nanoestruturas/química , Neoplasias/diagnóstico , Neoplasias/terapia , Óxidos/química , Fototerapia/métodos , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Materiais Biomiméticos/síntese química , Materiais Biomiméticos/metabolismo , Catálise , Linhagem Celular Tumoral , Meios de Contraste/química , Cobre/química , Humanos , Marcação por Isótopo/métodos , Camundongos , Camundongos Endogâmicos BALB C , Modelos Animais , Oxirredução/efeitos dos fármacos , Tamanho da Partícula , Tomografia por Emissão de Pósitrons/métodos , Propriedades de Superfície , Nanomedicina Teranóstica/métodos , Água/química
16.
Blood Adv ; 2(21): 2947-2958, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30401752

RESUMO

Platelet α-granule cargo release is fundamental to both hemostasis and thrombosis. Granule matrix hydration is a key regulated step in this process, yet its mechanism is poorly understood. In endothelial cells, there is evidence for 2 modes of cargo release: a jack-in-the-box mechanism of hydration-dependent protein phase transitions and an actin-driven granule constriction/extrusion mechanism. The third alternative considered is a prefusion, channel-mediated granule swelling, analogous to the membrane "ballooning" seen in procoagulant platelets. Using thrombin-stimulated platelets from a set of secretion-deficient, soluble N-ethylmaleimide factor attachment protein receptor (SNARE) mutant mice and various ultrastructural approaches, we tested predictions of these mechanisms to distinguish which best explains the α-granule release process. We found that the granule decondensation/hydration required for cargo expulsion was (1) blocked in fusion-protein-deficient platelets; (2) characterized by a fusion-dependent transition in granule size in contrast to a preswollen intermediate; (3) determined spatially with α-granules located close to the plasma membrane (PM) decondensing more readily; (4) propagated from the site of granule fusion; and (5) traced, in 3-dimensional space, to individual granule fusion events at the PM or less commonly at the canalicular system. In sum, the properties of α-granule decondensation/matrix hydration strongly indicate that α-granule cargo expulsion is likely by a jack-in-the-box mechanism rather than by gradual channel-regulated water influx or by a granule-constriction mechanism. These experiments, in providing a structural and mechanistic basis for cargo expulsion, should be informative in understanding the α-granule release reaction in the context of hemostasis and thrombosis.


Assuntos
Plaquetas/metabolismo , Grânulos Citoplasmáticos/metabolismo , Proteínas SNARE/metabolismo , Animais , Plaquetas/citologia , Plaquetas/efeitos dos fármacos , Plaquetas/ultraestrutura , Membrana Celular/metabolismo , Células Endoteliais/metabolismo , Exocitose , Lisossomos/metabolismo , Fusão de Membrana , Camundongos , Microscopia Eletrônica , Proteínas SNARE/genética , Trombina/farmacologia , Corpos de Weibel-Palade/metabolismo
17.
Adv Mater ; : e1803163, 2018 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-29972604

RESUMO

Gd-based T 1 -weighted contrast agents have dominated the magnetic resonance imaging (MRI) contrast agent market for decades. Nevertheless, they are reported to be nephrotoxic and the U.S. Food and Drug Administration has issued a general warning concerning their use. In order to reduce the risk of nephrotoxicity, the MRI performance of the Gd-based T 1 -weighted contrast agents needs to be improved to allow a much lower dosage. In this study, novel dotted core-shell nanoparticles (FeGd-HN3-RGD2) with superhigh r 1 value (70.0 mM-1 s-1 ) and very low r 2 /r 1 ratio (1.98) are developed for high-contrast T 1 -weighted MRI of tumors. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and histological analyses show good biocompatibility of FeGd-HN3-RGD2. Laser scanning confocal microscopy images and flow cytometry demonstrate active targeting to integrin αv ß3 positive tumors. MRI of tumors shows high tumor ΔSNR for FeGd-HN3-RGD2 (477 ± 44%), which is about 6-7-fold higher than that of Magnevist (75 ± 11%). MRI and inductively coupled plasma results further confirm that the accumulation of FeGd-HN3-RGD2 in tumors is higher than liver and spleen due to the RGD2 targeting and small hydrodynamic particle size (8.5 nm), and FeGd-HN3-RGD2 is readily cleared from the body by renal excretion.

18.
PLoS One ; 13(1): e0190905, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29342202

RESUMO

Trichoplax adhaerens has only six cell types. The function as well as the structure of crystal cells, the least numerous cell type, presented an enigma. Crystal cells are arrayed around the perimeter of the animal and each contains a birefringent crystal. Crystal cells resemble lithocytes in other animals so we looked for evidence they are gravity sensors. Confocal microscopy showed that their cup-shaped nuclei are oriented toward the edge of the animal, and that the crystal shifts downward under the influence of gravity. Some animals spontaneously lack crystal cells and these animals behaved differently upon being tilted vertically than animals with a typical number of crystal cells. EM revealed crystal cell contacts with fiber cells and epithelial cells but these contacts lacked features of synapses. EM spectroscopic analyses showed that crystals consist of the aragonite form of calcium carbonate. We thus provide behavioral evidence that Trichoplax are able to sense gravity, and that crystal cells are likely to be their gravity receptors. Moreover, because placozoans are thought to have evolved during Ediacaran or Cryogenian eras associated with aragonite seas, and their crystals are made of aragonite, they may have acquired gravity sensors during this early era.


Assuntos
Carbonato de Cálcio/metabolismo , Gravitação , Placozoa/metabolismo , Animais , Carbonato de Cálcio/química , Cristalização , Corantes Fluorescentes , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Neurônios , Placozoa/citologia , Análise Espectral/métodos , Sinapses
19.
Nanoscale ; 9(6): 2291-2300, 2017 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-28127597

RESUMO

Colloidal nanoparticles have shown tremendous potential as cancer drug carriers and as phototherapeutics. However, the stability of nanoparticles under physiological and phototherapeutic conditions is a daunting issue, which needs to be addressed in order to ensure a successful clinical translation. The design, development and implementation of unique algorithms are described herein for high-throughput hydrodynamic size measurements of colloidal nanoparticles. The data obtained from such measurements provide clinically-relevant particle size distribution assessments that are directly related to the stability and aggregation profiles of the nanoparticles under putative physiological and phototherapeutic conditions; those profiles are not only dependent on the size and surface coating of the nanoparticles, but also on their composition. Uncoated nanoparticles showed varying degrees of association with bovine serum albumin, whereas PEGylated nanoparticles did not exhibit significant association with the protein. The algorithm-driven, high-throughput size screening method described in this report provides highly meaningful size measurement patterns stemming from the association of colloidal particles with bovine serum albumin used as a protein model. Noteworthy is that this algorithm-based high-throughput method can accomplish sophisticated hydrodynamic size measurement protocols within days instead of years it would take conventional hydrodynamic size measurement techniques to achieve a similar task.


Assuntos
Coloides/química , Portadores de Fármacos , Ensaios de Triagem em Larga Escala , Nanopartículas , Algoritmos , Tamanho da Partícula , Soroalbumina Bovina
20.
Nanomedicine ; 13(2): 503-513, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27520728

RESUMO

Stem cell-based therapies have become a major focus in regenerative medicine and to treat diseases. A straightforward approach combining three drugs, heparin (H), protamine (P) with ferumoxytol (F) in the form of nanocomplexes (NCs) effectively labeled stem cells for cellular MRI. We report on the physicochemical characteristics for optimizing the H, P, and F components in different ratios, and mixing sequences, producing NCs that varied in hydrodynamic size. NC size depended on the order in which drugs were mixed in media. Electron microscopy of HPF or FHP showed that F was located on the surface of spheroidal shaped HP complexes. Human stem cells incubated with FHP NCs resulted in a significantly greater iron concentration per cell compared to that found in HPF NCs with the same concentration of F. These results indicate that FHP could be useful for labeling stem cells in translational studies in the clinic.


Assuntos
Óxido Ferroso-Férrico , Heparina , Protaminas , Células-Tronco , Rastreamento de Células , Humanos , Imageamento por Ressonância Magnética , Magnetismo , Nanopartículas , Transplante de Células-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...