Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Insects ; 10(1)2019 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-30626027

RESUMO

Pollinators, including honey bees, are responsible for the successful reproduction of more than 87% of flowering plant species: they are thus vital to ecosystem health and agricultural services world-wide. To investigate honey bee exposure to pesticides, 168 pollen samples and 142 wax comb samples were collected from colonies within six stationary apiaries in six U.S. states. These samples were analyzed for evidence of pesticides. Samples were taken bi-weekly when each colony was active. Each apiary included thirty colonies, of which five randomly chosen colonies in each apiary were sampled for pollen. The pollen samples were separately pooled by apiary. There were a total of 714 detections in the collected pollen and 1008 detections in collected wax. A total of 91 different compounds were detected: of these, 79 different pesticides and metabolites were observed in the pollen and 56 were observed in the wax. In all years, insecticides were detected more frequently than were fungicides or herbicides: one third of the detected pesticides were found only in pollen. The mean (standard deviation (SD)) number of detections per pooled pollen sample varied by location from 1.1 (1.1) to 8.7 (2.1). Ten different modes of action were found across all four years and nine additional modes of action occurred in only one year. If synergy in toxicological response is a function of simultaneous occurrence of multiple distinct modes of action, then a high frequency of potential synergies was found in pollen and wax-comb samples. Because only pooled pollen samples were obtained from each apiary, and these from only five colonies per apiary per year, more data are needed to adequately evaluate the differences in pesticide exposure risk to honey bees among colonies in the same apiary and by year and location.

2.
J Invertebr Pathol ; 153: 57-64, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29453966

RESUMO

Managed honey bee (Apis mellifera) populations are currently facing unsustainable losses due to a variety of factors. Colonies are challenged with brood pathogens, such as the fungal agent of chalkbrood disease, the microsporidian gut parasite Nosema spp., and several viruses. These pathogens may be transmitted horizontally from worker to worker, vertically from queen to egg and via vectors like the parasitic mite, Varroa destructor. Despite the fact that these pathogens are widespread and often harbored in wax comb that is reused from year to year and transferred across beekeeping operations, few, if any, universal treatments exist for their control. In order to mitigate some of these biological threats to honey bees and to allow for more sustainable reuse of equipment, investigations into techniques for the sterilization of hive equipment and comb are of particular significance. Here, we investigated the potential of gamma irradiation for inactivation of the fungal pathogen Ascosphaera apis, the microsporidian Nosema ceranae and three honey bee viruses (Deformed wing virus [DWV], Black queen cell virus [BQCV], and Chronic bee paralysis virus [CBPV]), focusing on the infectivity of these pathogens post-irradiation. Results indicate that gamma irradiation can effectively inactivate A. apis, N. ceranae, and DWV. Partial inactivation was noted for BQCV and CBPV, but this did not reduce effects on mortality at the tested, relatively high doses. These findings highlight the importance of studying infection rate and symptom development post-treatment and not simply rate or quantity detected. These findings suggest that gamma irradiation may function as a broad treatment to help mitigate colony losses and the spread of pathogens through the exchange of comb across colonies, but raises the question why some viruses appear to be unaffected. These results provide the basis for subsequent studies on benefits of irradiation of used comb for colony health and productivity.


Assuntos
Criação de Abelhas/métodos , Abelhas/parasitologia , Fungos/efeitos da radiação , Raios gama , Microsporídios/efeitos da radiação , Vírus/efeitos da radiação , Animais
3.
BMC Genomics ; 13: 285, 2012 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-22747707

RESUMO

BACKGROUND: We present a comprehensive transcriptome analysis of the fungus Ascosphaera apis, an economically important pathogen of the Western honey bee (Apis mellifera) that causes chalkbrood disease. Our goals were to further annotate the A. apis reference genome and to identify genes that are candidates for being differentially expressed during host infection versus axenic culture. RESULTS: We compared A. apis transcriptome sequence from mycelia grown on liquid or solid media with that dissected from host-infected tissue. 454 pyrosequencing provided 252 Mb of filtered sequence reads from both culture types that were assembled into 10,087 contigs. Transcript contigs, protein sequences from multiple fungal species, and ab initio gene predictions were included as evidence sources in the Maker gene prediction pipeline, resulting in 6,992 consensus gene models. A phylogeny based on 12 of these protein-coding loci further supported the taxonomic placement of Ascosphaera as sister to the core Onygenales. Several common protein domains were less abundant in A. apis compared with related ascomycete genomes, particularly cytochrome p450 and protein kinase domains. A novel gene family was identified that has expanded in some ascomycete lineages, but not others. We manually annotated genes with homologs in other fungal genomes that have known relevance to fungal virulence and life history. Functional categories of interest included genes involved in mating-type specification, intracellular signal transduction, and stress response. Computational and manual annotations have been made publicly available on the Bee Pests and Pathogens website. CONCLUSIONS: This comprehensive transcriptome analysis substantially enhances our understanding of the A. apis genome and its expression during infection of honey bee larvae. It also provides resources for future molecular studies of chalkbrood disease and ultimately improved disease management.


Assuntos
Abelhas/microbiologia , Perfilação da Expressão Gênica/métodos , Interações Hospedeiro-Patógeno/genética , Onygenales/genética , Alelos , Animais , Sequência Conservada/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Genes Fúngicos Tipo Acasalamento/genética , Estudos de Associação Genética , Loci Gênicos/genética , Anotação de Sequência Molecular , Família Multigênica/genética , Onygenales/patogenicidade , Filogenia , Estrutura Terciária de Proteína , Transdução de Sinais/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...