Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metallomics ; 14(10)2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36208212

RESUMO

Understanding the nanoscale chemical speciation of heterogeneous systems in their native environment is critical for several disciplines such as life and environmental sciences, biogeochemistry, and materials science. Synchrotron-based X-ray spectromicroscopy tools are widely used to understand the chemistry and morphology of complex material systems owing to their high penetration depth and sensitivity. The multidimensional (4D+) structure of spectromicroscopy data poses visualization and data-reduction challenges. This paper reports the strategies for the visualization and analysis of spectromicroscopy data. We created a new graphical user interface and data analysis platform named XMIDAS (X-ray multimodal image data analysis software) to visualize spectromicroscopy data from both image and spectrum representations. The interactive data analysis toolkit combined conventional analysis methods with well-established machine learning classification algorithms (e.g. nonnegative matrix factorization) for data reduction. The data visualization and analysis methodologies were then defined and optimized using a model particle aggregate with known chemical composition. Nanoprobe-based X-ray fluorescence (nano-XRF) and X-ray absorption near edge structure (nano-XANES) spectromicroscopy techniques were used to probe elemental and chemical state information of the aggregate sample. We illustrated the complete chemical speciation methodology of the model particle by using XMIDAS. Next, we demonstrated the application of this approach in detecting and characterizing nanoparticles associated with alveolar macrophages. Our multimodal approach combining nano-XRF, nano-XANES, and differential phase-contrast imaging efficiently visualizes the chemistry of localized nanostructure with the morphology. We believe that the optimized data-reduction strategies and tool development will facilitate the analysis of complex biological and environmental samples using X-ray spectromicroscopy techniques.


Assuntos
Nanopartículas , Nanoestruturas , Raios X , Software , Algoritmos
2.
Environ Sci Technol ; 56(11): 7006-7016, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35235749

RESUMO

Particulate matter (PM) air pollution poses a major global health risk, but the role of iron (Fe) is not clearly defined because chemistry at the particle-cell interface is often not considered. Detailed spectromicroscopy characterizations of PM2.5 samples from the San Joaquin Valley, CA identified major Fe-bearing components and estimated their relative proportions. Iron in ambient PM2.5 was present in spatially and temporally variable mixtures, mostly as Fe(III) oxides and phyllosilicates, but with significant fractions of metallic iron (Fe(0)), Fe(II,III) oxide, and Fe(III) bonded to organic carbon. Fe(0) was present as aggregated, nm-sized particles that comprised up to ∼30% of the Fe spectral fraction. Mixtures reflect anthropogenic and geogenic particles subjected to environmental weathering, but reduced Fe in PM originates from anthropogenic sources, likely as abrasion products. Possible mechanistic pathways involving Fe(0) particles and mixtures of Fe(II) and Fe(III) surface species may generate hydrogen peroxide and oxygen-centered radical species (hydroxyl, hydroperoxyl, or superoxide) in Fenton-type reactions. From a health perspective, PM mixtures with reduced and oxidized Fe will have a disproportionate effect in cellular response after inhalation because of their tendency to shuttle electrons and produce oxidants and electrophiles that induce inflammation and oxidative stress.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Humanos , Ferro , Material Particulado/análise , Espécies Reativas de Oxigênio
3.
Atmos Environ (1994) ; 2452021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33223923

RESUMO

The speciation, oxidation states, and relative abundance of iron (Fe) phases in PM2.5 samples from two locations in urban Los Angeles were investigated using a combination of bulk and spatially resolved, element-specific spectroscopy and microscopy methods. Synchrotron X-ray absorption spectroscopy (XAS) of bulk samples in situ (i.e., without extraction or digestion) was used to quantify the relative fractions of major Fe phases, which were corroborated by spatially resolved spectro-microscopy measurements. Ferrihydrite (amorphous Fe(III)-hydroxide) comprised the largest Fe fraction (34-52%), with hematite (α-Fe2O3; 13-23%) and magnetite (Fe3O4; 10-24%) identified as major crystalline oxide components. An Fe-bearing phyllosilicate fraction (16-23%) was fit best with a reference spectrum of a natural illite/smectite mineral, and metallic Fe(0) was a relatively small (2-6%) but easily identified component. Sizes, morphologies, oxidation state, and trace element compositions of Fe-bearing PM from electron microscopy, electron energy loss spectroscopy (EELS), and scanning transmission X-ray microscopy (STXM) revealed variable and heterogeneous mixtures of Fe species and phases, often associated with carbonaceous material with evidence of surface oxidation. Ferrihydrite (or related Fe(III) hydroxide phases) was ubiquitous in PM samples. It forms as an oxidation or surface alteration product of crystalline Fe phases, and also occurs as coatings or nanoparticles dispersed with other phases as a result of environmental dissolution and re-precipitation reactions. The prevalence of ferrihydrite (and adsorbed Fe(III) has likely been underestimated in studies of ambient PM because it is non-crystalline, non-magnetic, more soluble than crystalline phases, and found in complex mixtures. Review of potential sources of different particle types suggests that the majority of Fe-bearing PM from these urban sites originates from anthropogenic activities, primarily abrasion products from vehicle braking systems and engine emissions from combustion and/or wear. These variable mixtures have a high probability for electron transfer reactions between Fe, redox-active metals such as copper, and reactive carbon species such as quinones. Our findings suggest the need to assess biological responses of specific Fe-bearing phases both individually and in combination to unravel mechanisms of adverse health effects of particulate Fe.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...