Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Biol Sci ; 290(2001): 20230619, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37339742

RESUMO

Termites host diverse communities of gut microbes, including many bacterial lineages only found in this habitat. The bacteria endemic to termite guts are transmitted via two routes: a vertical route from parent colonies to daughter colonies and a horizontal route between colonies sometimes belonging to different termite species. The relative importance of both transmission routes in shaping the gut microbiota of termites remains unknown. Using bacterial marker genes derived from the gut metagenomes of 197 termites and one Cryptocercus cockroach, we show that bacteria endemic to termite guts are mostly transferred vertically. We identified 18 lineages of gut bacteria showing cophylogenetic patterns with termites over tens of millions of years. Horizontal transfer rates estimated for 16 bacterial lineages were within the range of those estimated for 15 mitochondrial genes, suggesting that horizontal transfers are uncommon and vertical transfers are the dominant transmission route in these lineages. Some of these associations probably date back more than 150 million years and are an order of magnitude older than the cophylogenetic patterns between mammalian hosts and their gut bacteria. Our results suggest that termites have cospeciated with their gut bacteria since first appearing in the geological record.


Assuntos
Microbioma Gastrointestinal , Isópteros , Animais , Filogenia , Simbiose , Bactérias/genética , Mamíferos
2.
Microbiome ; 10(1): 78, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35624491

RESUMO

BACKGROUND: Termites primarily feed on lignocellulose or soil in association with specific gut microbes. The functioning of the termite gut microbiota is partly understood in a handful of wood-feeding pest species but remains largely unknown in other taxa. We intend to fill this gap and provide a global understanding of the functional evolution of termite gut microbiota. RESULTS: We sequenced the gut metagenomes of 145 samples representative of the termite diversity. We show that the prokaryotic fraction of the gut microbiota of all termites possesses similar genes for carbohydrate and nitrogen metabolisms, in proportions varying with termite phylogenetic position and diet. The presence of a conserved set of gut prokaryotic genes implies that essential nutritional functions were present in the ancestor of modern termites. Furthermore, the abundance of these genes largely correlated with the host phylogeny. Finally, we found that the adaptation to a diet of soil by some termite lineages was accompanied by a change in the stoichiometry of genes involved in important nutritional functions rather than by the acquisition of new genes and pathways. CONCLUSIONS: Our results reveal that the composition and function of termite gut prokaryotic communities have been remarkably conserved since termites first appeared ~ 150 million years ago. Therefore, the "world's smallest bioreactor" has been operating as a multipartite symbiosis composed of termites, archaea, bacteria, and cellulolytic flagellates since its inception. Video Abstract.


Assuntos
Microbioma Gastrointestinal , Isópteros , Animais , Microbioma Gastrointestinal/genética , Metagenoma , Filogenia , Solo
3.
PeerJ ; 8: e9350, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32676220

RESUMO

Microbes ubiquitously inhabit animals and plants, often affecting their host's phenotype. As a result, even in a constant genetic background, the host's phenotype may evolve through indirect selection on the microbiome. 'Microbiome engineering' offers a promising novel approach for attaining desired host traits but has been attempted only a few times. Building on the known role of the microbiome on development in fruit flies, we attempted to evolve earlier-eclosing flies by selecting on microbes in the growth media. We carried out parallel evolution experiments in no- and high-sugar diets by transferring media associated with fast-developing fly lines over the course of four selection cycles. In each cycle, we used sterile eggs from the same inbred population, and assayed mean fly eclosion times. Ultimately, flies eclosed seven to twelve hours earlier, depending on the diet, but microbiome engineering had no effect relative to a random-selection control treatment. 16S rRNA gene sequencing showed that the microbiome did evolve, particularly in the no sugar diet, with an increase in Shannon diversity over time. Thus, while microbiome evolution did affect host eclosion times, these effects were incidental. Instead, any experimentally enforced selection effects were swamped by uncontrolled microbial evolution, likely resulting in its adaptation to the media. These results imply that selection on host phenotypes must be strong enough to overcome other selection pressures simultaneously operating on the microbiome. The independent evolutionary trajectories of the host and the microbiome may limit the extent to which indirect selection on the microbiome can ultimately affect host phenotype. Random-selection lines accounting for independent microbial evolution are essential for experimental microbiome engineering studies.

4.
Genome Biol Evol ; 9(10): 2640-2649, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29048530

RESUMO

Venoms are among the most biologically active secretions known, and are commonly believed to evolve under extreme positive selection. Many venom gene families, however, have undergone duplication, and are often deployed in doses vastly exceeding the LD50 for most prey species, which should reduce the strength of positive selection. Here, we contrast these selective regimes using snake venoms, which consist of rapidly evolving protein formulations. Though decades of extensive studies have found that snake venom proteins are subject to strong positive selection, the greater action of drift has been hypothesized, but never tested. Using a combination of de novo genome sequencing, population genomics, transcriptomics, and proteomics, we compare the two modes of evolution in the pitviper, Protobothrops mucrosquamatus. By partitioning selective constraints and adaptive evolution in a McDonald-Kreitman-type framework, we find support for both hypotheses: venom proteins indeed experience both stronger positive selection, and lower selective constraint than other genes in the genome. Furthermore, the strength of selection may be modulated by expression level, with more abundant proteins experiencing weaker selective constraint, leading to the accumulation of more deleterious mutations. These findings show that snake venoms evolve by a combination of adaptive and neutral mechanisms, both of which explain their extraordinarily high rates of molecular evolution. In addition to positive selection, which optimizes efficacy of the venom in the short term, relaxed selective constraints for deleterious mutations can lead to more rapid turnover of individual proteins, and potentially to exploration of a larger venom phenotypic space.


Assuntos
Evolução Molecular , Genoma , Venenos de Víboras/genética , Viperidae/genética , Animais , Deriva Genética , Seleção Genética , Venenos de Víboras/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...