Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Drugs ; 21(3)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36976242

RESUMO

Cardiovascular diseases (CVDs) are among the most impactful illnesses globally. Currently, the available therapeutic option has several side effects, including hypotension, bradycardia, arrhythmia, and alteration in different ion concentrations. Recently, bioactive compounds from natural sources, including plants, microorganisms, and marine creatures, have gained a lot of interest. Marine sources serve as reservoirs for new bioactive metabolites with various pharmacological activities. The marine-derived compound such as omega-3 acid ethyl esters, xyloketal B, asperlin, and saringosterol showed promising results in several CVDs. The present review focuses on marine-derived compounds' cardioprotective potential for hypertension, ischemic heart disease, myocardial infarction, and atherosclerosis. In addition to therapeutic alternatives, the current use of marine-derived components, the future trajectory, and restrictions are also reviewed.


Assuntos
Doenças Cardiovasculares , Hipertensão , Humanos , Doenças Cardiovasculares/tratamento farmacológico
2.
Life Sci ; 316: 121389, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36646376

RESUMO

BACKGROUND: Thousands of people worldwide pass away yearly due to neurological disorders, cardiovascular illnesses, cancer, metabolic disorders, and microbial infections. Additionally, a sizable population has also been impacted by hepatotoxicity, ulcers, gastroesophageal reflux disease, and breast fissure. These ailments are likewise steadily increasing along with the increase in life expectancy. Finding innovative therapies to cure and consequently lessen the impact of these ailments is, therefore, a global concern. METHODS AND MATERIALS: All provided literature on Guaiazulene (GA) and its related compounds were searched using various electronic databases such as PubMed, Google Scholar, Web of Science, Elsevier, Springer, ACS, CNKI, and books via the keywords Guaiazulene, Matricaria chamomilla, GA-related compounds, and Guaiazulene analogous. RESULTS: The FDA has approved the bicyclic sesquiterpene GA, commonly referred to as azulon or 1,4-dimethyl-7-isopropylazulene, as a component in cosmetic colorants. The pleiotropic health advantages of GA and related substances, especially their antioxidant and anti-inflammatory effects, attracted a lot of research. Numerous studies have found that GA can help to manage various conditions, including bacterial infections, tumors, immunomodulation, expectorants, diuretics, diaphoresis, ulcers, dermatitis, proliferation, and gastritis. These conditions all involve lipid peroxidation and inflammatory response. In this review, we have covered the biomedical applications of GA. Moreover, we also emphasize the therapeutic potential of guaiazulene derivatives in pre-clinical and clinical settings, along with their underlying mechanism(s). CONCLUSION: GA and its related compounds exhibit therapeutic potential in several diseases. Still, it is necessary to investigate their potential in animal models for various other ailments and establish their safety profile. They might be a good candidate to advance to clinical trials.


Assuntos
Neoplasias , Úlcera , Animais , Úlcera/tratamento farmacológico , Azulenos/farmacologia , Azulenos/uso terapêutico , Sesquiterpenos de Guaiano/farmacologia , Sesquiterpenos de Guaiano/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Neoplasias/tratamento farmacológico , Compostos Fitoquímicos , Extratos Vegetais/uso terapêutico
3.
Environ Sci Pollut Res Int ; 30(12): 32854-32865, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36472742

RESUMO

Air pollution and environmental issues significantly impact life, resulting in the emergence and exacerbation of allergic asthma and other chronic respiratory infections. The main objective of this study is to suppress allergic asthma by TAK-242 from lipopolysaccharide-induced airway inflammation primarily stimulating toll-like receptor-4, and also to determine the potential mechanism of asthma eradication. The TAK-242 anti-allergic action was assured through the ovalbumin murine model of asthma via bronchial hyperresponsiveness and inflammation of the respiration tract in a pre-existing allergic inflammation paradigm. Swiss albino mice were sensitized and then challenged by ovalbumin and lipopolysaccharide for 5 days straight. TAK-242 reaction was assessed by inflammatory cytokines, and inflammatory cell count was determined from blood serum and bronchoalveolar lavage fluid, as well as group-wise regular weight assessments. After ovalbumin, lipopolysaccharide infusion, toll-like receptor-4 agonists caused a substantial increase in airway hyperresponsiveness, specific cellular inflammation, histological alterations, and immune mediator synthesis, as well as dose-related body-weight variations. A decrease in lipopolysaccharide-induced leukocyte count and Th1/Th17 related cytokines, TNF-α, and IL-6 expression through the ELISA study was particularly noticeable. Finally in treated groups, TAK-242, a TLR4/MD2 complex inhibitor, reduced airway inflammation and histopathological changes, cytokine expression, and body-weight management. TAK-242 has been found in an ovalbumin allergic asthma model to be a potential inhibitor of lipopolysaccharide-induced respiratory infection.


Assuntos
Asma , Lipopolissacarídeos , Camundongos , Animais , Lipopolissacarídeos/farmacologia , Ovalbumina , Receptor 4 Toll-Like/metabolismo , Carga Bacteriana , Asma/induzido quimicamente , Asma/tratamento farmacológico , Citocinas , Líquido da Lavagem Broncoalveolar , Inflamação/complicações , Pulmão/patologia , Camundongos Endogâmicos BALB C , Modelos Animais de Doenças
4.
Environ Sci Pollut Res Int ; 30(10): 28118-28132, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36394807

RESUMO

Rhinovirus infection frequently causes COPD and asthma exacerbations. Impaired anti-viral signaling and reduced viral clearance have both been seen in sick bronchial epithelium, potentially increasing exacerbations. Polyinosinic:polycytidylic acid (Poly(I:C)), a Toll-like receptor-3 (TLR3) ligand, has been shown to cause a viral exacerbation of severe asthma by detecting double-stranded RNA (dsRNA). The purpose of this work was to determine the effect of a TLR3/dsRNA complex inhibitor-Calbiochem drug in the prevention of Poly(I:C)-induced airway inflammation following TLR3 activation and to uncover a potential pathway for the cure of asthma through TLR3 inhibition. Mice were sensitized with Poly(I:C) as an asthma model before being challenged by PBS and ovalbumin (OVA) chemicals. The mice were administered a TLR3/dsRNA complex inhibitor. Throughout the trial, the mice's body weight was measured after each dosage. Biochemical methods are used to analyze the protein as well as enzyme composition in airway tissues. BALF specimens are stained using Giemsa to identify inflammatory cells and lung histopathology to determine morphological abnormalities in lung tissues. By using the ELISA approach, cytokine levels such as TNF-α, IL-13, IL-6, IL-5, and IgE antibody expression in lung tissue and blood serum were assessed. TLR3/dsRNA complex inhibitor drug significantly lowered the number of cells in BALF and also on Giemsa staining slides. It also downregulated the level of TNF-α and IL-6 in contrast to OVA and Poly(I:C) administered in animals. A TLR3/dsRNA complex inhibitor decreased the fraction of oxidative stress markers (MDA, GSH, GPx, and CAT) in lung tissues while keeping the mice's body weight constant during the treatment period. By decreasing alveoli, bronchial narrowing, smooth muscle hypertrophy, and granulocyte levels, the TLR3/dsRNA complex blocker significantly reduced the histopathological damage caused by OVA and Poly(I:C) compounds. In an animal model utilizing ovalbumin, TLR3/dsRNA complex inhibitors similarly reduced the bronchial damage produced by Poly(I:C). A novel TLR3/dsRNA complex inhibitor is expected to be employed in clinical studies since it suppresses airway inflammation without inducing antiviral approach resistance.


Assuntos
Asma , Fator de Necrose Tumoral alfa , Camundongos , Animais , Fator de Necrose Tumoral alfa/metabolismo , Ovalbumina , RNA de Cadeia Dupla/metabolismo , RNA de Cadeia Dupla/uso terapêutico , Receptor 3 Toll-Like/metabolismo , Receptor 3 Toll-Like/uso terapêutico , Interleucina-6/metabolismo , Modelos Animais de Doenças , Asma/induzido quimicamente , Pulmão/patologia , Inflamação/induzido quimicamente , Inflamação/metabolismo , Poli I-C/farmacologia , Poli I-C/uso terapêutico , Líquido da Lavagem Broncoalveolar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...