Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 120(11): 117203, 2018 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-29601757

RESUMO

We show using numerical simulations that slowly driven Skyrmions interacting with random pinning move via correlated jumps or avalanches. The avalanches exhibit power-law distributions in their duration and size, and the average avalanche shape for different avalanche durations can be scaled to a universal function, in agreement with theoretical predictions for systems in a nonequilibrium critical state. A distinctive feature of Skyrmions is the influence of the nondissipative Magnus term. When we increase the ratio of the Magnus term to the damping term, a change in the universality class of the behavior occurs, the average avalanche shape becomes increasingly asymmetric, and individual avalanches exhibit motion in the direction perpendicular to their own density gradient.

2.
Phys Rev Lett ; 107(12): 126806, 2011 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-22026788

RESUMO

By using high-magnetic fields (up to 60 T), we observe compelling evidence of the integer quantum Hall effect in trilayer graphene. The magnetotransport fingerprints are similar to those of the graphene monolayer, except for the absence of a plateau at a filling factor of ν=2. At a very low filling factor, the Hall resistance vanishes due to the presence of mixed electron and hole carriers induced by disorder. The measured Hall resistivity plateaus are well reproduced theoretically, using a self-consistent Hartree calculations of the Landau levels and assuming an ABC stacking order of the three layers.

3.
Phys Rev Lett ; 105(11): 116805, 2010 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-20867597

RESUMO

We show that the entanglement spectrum can be used to define non-local order in gapless spin systems. We find a gap that fully separates a series of generic, high "entanglement energy" levels, from a flat band of levels with specific multiplicities defining the ground state, and remains finite in the thermodynamic limit. We pick the appropriate set of quantum numbers and partition the system in this space, corresponding to a nonlocal real-space cut. Despite the Laughlin state being bulk gapped while the antiferromagnetic spin chain state is bulk gapless, we show that the S=1/2 Heisenberg antiferromagnet in one dimension has an entanglement spectrum almost identical to that of the Laughlin Fractional Quantum Hall state in two dimensions, revealing the similar field theory of their low-energy bulk and edge excitations, respectively. We also discuss the dimerization transition from entanglement gap scaling.

4.
Chaos ; 2(1): 125-130, 1992 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12779959

RESUMO

Quantized classically chaotic maps on a toroidal two-dimensional phase space are studied. A discrete, topological criterion for phase-space localization is presented. To each eigenfunction is associated an integer, analogous to a quantized Hall conductivity, which tests the way the eigenfunction explores the phase space as some boundary conditions are changed. The correspondence between delocalization and chaotic classical dynamics is discussed, as well as the role of degeneracies of the eigenspectrum in the transition from localized to delocalized states. The general results are illustrated with a particular model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...