Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurobiol Stress ; 6: 14-21, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28229105

RESUMO

The early postnatal period is a highly sensitive time period for the developing brain, both in humans and rodents. During this time window, exposure to adverse experiences can lastingly impact cognitive and emotional development. In this review, we briefly discuss human and rodent studies investigating how exposure to adverse early life conditions - mainly related to quality of parental care - affects brain activity, brain structure, cognition and emotional responses later in life. We discuss the evidence that early life adversity hampers later hippocampal and prefrontal cortex functions, while increasing amygdala activity, and the sensitivity to stressors and emotional behavior later in life. Exposure to early life stress may thus on the one hand promote behavioral adaptation to potentially threatening conditions later in life -at the cost of contextual memory formation in less threatening situations- but may on the other hand also increase the sensitivity to develop stress-related and anxiety disorders in vulnerable individuals.

2.
Neurobiol Learn Mem ; 133: 30-38, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27246249

RESUMO

Early life adversity can have long-lasting impact on learning and memory processes and increase the risk to develop stress-related psychopathologies later in life. In this study we investigated (i) how chronic early life stress (ELS) - elicited by limited nesting and bedding material from postnatal day 2 to 9 - affects conditioned fear in adult mice and (ii) whether these effects can be prevented by blocking glucocorticoid receptors (GRs) at adolescent age. In adult male and female mice, ELS did not affect freezing behavior to the first tone 24h after training in an auditory fear-conditioning paradigm. Exposure to repeated tones 24h after training also resulted in comparable freezing behavior in ELS and control mice, both in males and females. However, male (but not female) ELS compared to control mice showed significantly more freezing behavior between the tone-exposures, i.e. during the cue-off periods. Intraperitoneal administration of the GR antagonist RU38486 during adolescence (on postnatal days 28-30) fully prevented enhanced freezing behavior during the cue-off period in adult ELS males. Western blot analysis revealed no effects of ELS on hippocampal expression of glucocorticoid receptors, neither at postnatal day 28 nor at adult age, when mice were behaviorally tested. We conclude that ELS enhances freezing behavior in adult mice in a potentially safe context after cue-exposure, which can be normalized by brief blockade of glucocorticoid receptors during the critical developmental window of adolescence.


Assuntos
Medo/fisiologia , Reação de Congelamento Cataléptica/fisiologia , Antagonistas de Hormônios/farmacologia , Receptores de Glucocorticoides/fisiologia , Estresse Psicológico/fisiopatologia , Fatores Etários , Animais , Sinais (Psicologia) , Feminino , Antagonistas de Hormônios/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mifepristona/administração & dosagem , Mifepristona/farmacologia , Receptores de Glucocorticoides/antagonistas & inibidores , Fatores Sexuais
3.
PLoS One ; 9(1): e86236, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24465979

RESUMO

Adrenal corticosteroid hormones act via mineralocorticoid (MR) and glucocorticoid receptors (GR) in the brain, influencing learning and memory. MRs have been implicated in the initial behavioral response in novel situations, which includes behavioral strategies in learning tasks. Different strategies can be used to solve navigational tasks, for example hippocampus-dependent spatial or striatum-dependent stimulus-response strategies. Previous studies suggested that MRs are involved in spatial learning and induce a shift between learning strategies when animals are allowed a choice between both strategies. In the present study, we further explored the role of MRs in spatial and stimulus-response learning in two separate circular holeboard tasks using female mice with forebrain-specific MR deficiency and MR overexpression and their wildtype control littermates. In addition, we studied sex-specific effects using male and female MR-deficient mice. First, we found that MR-deficient compared to control littermates and MR-overexpressing mice display altered exploratory and searching behavior indicative of impaired acquisition of novel information. Second, female (but not male) MR-deficient mice were impaired in the spatial task, while MR-overexpressing female mice showed improved performance in the spatial task. Third, MR-deficient mice were also impaired in the stimulus-response task compared to controls and (in the case of females) MR-overexpressing mice. We conclude that MRs are important for coordinating the processing of information relevant for spatial as well as stimulus-response learning.


Assuntos
Encéfalo/fisiologia , Aprendizagem em Labirinto/fisiologia , Memória/fisiologia , Receptores de Mineralocorticoides/metabolismo , Animais , Encéfalo/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...