Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 5633, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34561451

RESUMO

The brain plays a key role in energy homeostasis, detecting nutrients, metabolites and circulating hormones from peripheral organs and integrating this information to control food intake and energy expenditure. Here, we show that a group of neurons in the Drosophila larval brain expresses the adiponectin receptor (AdipoR) and controls systemic growth and metabolism through insulin signaling. We identify glucose-regulated protein 78 (Grp78) as a circulating antagonist of AdipoR function produced by fat cells in response to dietary sugar. We further show that central AdipoR signaling inhibits peripheral Juvenile Hormone (JH) response, promoting insulin signaling. In conclusion, we identify a neuroendocrine axis whereby AdipoR-positive neurons control systemic insulin response.


Assuntos
Encéfalo/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Insulina/metabolismo , Neurônios/metabolismo , Receptores de Adiponectina/metabolismo , Animais , Animais Geneticamente Modificados , Encéfalo/citologia , Linhagem Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Metabolismo Energético/genética , Hemolinfa/metabolismo , Homeostase , Hormônios Juvenis/metabolismo , Larva/genética , Larva/metabolismo , Receptores de Adiponectina/genética , Transdução de Sinais/genética
2.
Cell ; 156(3): 510-21, 2014 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-24485457

RESUMO

The brain is the central organizer of food intake, matching the quality and quantity of the food sources with organismal needs. To ensure appropriate amino acid balance, many species reject a diet lacking one or several essential amino acids (EAAs) and seek out a better food source. Here, we show that, in Drosophila larvae, this behavior relies on innate sensing of amino acids in dopaminergic (DA) neurons of the brain. We demonstrate that the amino acid sensor GCN2 acts upstream of GABA signaling in DA neurons to promote avoidance of the EAA-deficient diet. Using real-time calcium imaging in larval brains, we show that amino acid imbalance induces a rapid and reversible activation of three DA neurons that are necessary and sufficient for food rejection. Taken together, these data identify a central amino-acid-sensing mechanism operating in specific DA neurons and controlling food intake.


Assuntos
Aminoácidos Essenciais/metabolismo , Drosophila melanogaster/fisiologia , Neurônios/metabolismo , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Proteínas de Drosophila/metabolismo , Ingestão de Alimentos , Proteínas Quinases/metabolismo , Ácido gama-Aminobutírico/metabolismo
3.
Dev Cell ; 15(4): 568-77, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18854141

RESUMO

In many metazoans, final adult size depends on the growth rate and the duration of the growth period, two parameters influenced by nutritional cues. We demonstrate that, in Drosophila, nutrition modifies the timing of development by acting on the prothoracic gland (PG), which secretes the molting hormone ecdysone. When activity of the Target of Rapamycin (TOR), a core component of the nutrient-responsive pathway, is reduced in the PG, the ecdysone peak that marks the end of larval development is abrogated. This extends the duration of growth and increases animal size. Conversely, the developmental delay caused by nutritional restriction is reversed by activating TOR solely in PG cells. Finally, nutrition acts on the PG during a restricted time window near the end of larval development that coincides with the commitment to pupariation. In conclusion, the PG uses TOR signaling to couple nutritional input with ecdysone production and developmental timing.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/crescimento & desenvolvimento , Alimentos , Sirolimo/metabolismo , Animais , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Ecdisona/biossíntese , Ecdisona/genética , Ecdisona/metabolismo , Imuno-Histoquímica , Larva/crescimento & desenvolvimento , Larva/metabolismo , Larva/fisiologia , Modelos Biológicos , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Fatores de Tempo
4.
Cell Metab ; 7(4): 333-8, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18396139

RESUMO

In metazoans, factors of the insulin family control growth, metabolism, longevity, and fertility in response to environmental cues. In Drosophila, a family of seven insulin-like peptides, called Dilps, activate a common insulin receptor. Some Dilp peptides carry both metabolic and growth functions, raising the possibility that various binding partners specify their functions. Here we identify dALS, the fly ortholog of the vertebrate insulin-like growth factor (IGF)-binding protein acid-labile subunit (ALS), as a Dilp partner that forms a circulating trimeric complex with one molecule of Dilp and one molecule of Imp-L2, an IgG-family molecule distantly related to mammalian IGF-binding proteins (IGFBPs). We further show that dALS antagonizes Dilp function to control animal growth as well as carbohydrate and fat metabolism. These results lead us to propose an evolutionary perspective in which ALS function appeared prior to the separation between metabolic and growth effects that are associated with vertebrate insulin and IGFs.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/crescimento & desenvolvimento , Drosophila/metabolismo , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , Somatomedinas/metabolismo , Fenômenos Fisiológicos da Nutrição Animal , Animais , Western Blotting , Proteínas de Drosophila/genética , Metabolismo Energético , Regulação da Expressão Gênica , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Estresse Fisiológico
5.
Cell Metab ; 5(2): 83-5, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17276349

RESUMO

Lipids provide an essential source of metabolites and energy in normal development as well as during periods of food deprivation. A recent study in Drosophila (Gutierrez et al., 2007) reveals a novel role in regulating lipid metabolism for specialized cells called oenocytes that present striking functional similarities to mammalian hepatocytes.


Assuntos
Modelos Animais de Doenças , Drosophila melanogaster/metabolismo , Fígado Gorduroso/metabolismo , Metabolismo dos Lipídeos , Animais , Corpo Adiposo/metabolismo , Fígado Gorduroso/patologia , Hepatócitos/metabolismo
6.
Biochem J ; 393(Pt 2): 471-80, 2006 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-16176182

RESUMO

The mechanism by which hypoxia induces gene transcription involves the inhibition of HIF-1alpha (hypoxia-inducible factor-1 alpha subunit) PHD (prolyl hydroxylase) activity, which prevents the VHL (von Hippel-Lindau)-dependent targeting of HIF-1alpha to the ubiquitin/proteasome pathway. HIF-1alpha thus accumulates and promotes gene transcription. In the present study, first we provide direct biochemical evidence for the presence of a conserved hypoxic signalling pathway in Drosophila melanogaster. An assay for 2-oxoglutarate-dependent dioxygenases was developed using Drosophila embryonic and larval homogenates as a source of enzyme. Drosophila PHD has a low substrate specificity and hydroxylates key proline residues in the ODD (oxygen-dependent degradation) domains of human HIF-1alpha and Similar, the Drosophila homologue of HIF-1alpha. The enzyme promotes human and Drosophila [(35)S]VHL binding to GST (glutathione S-transferase)-ODD-domain fusion protein. Hydroxylation is enhanced by proteasomal inhibitors and was ascertained using an anti-hydroxyproline antibody. Secondly, by using transgenic flies expressing a fusion protein that combined an ODD domain and the green fluorescent protein (ODD-GFP), we analysed the hypoxic cascade in different embryonic and larval tissues. Hypoxic accumulation of the reporter protein was observed in the whole tracheal tree, but not in the ectoderm. Hypoxic stabilization of ODD-GFP in the ectoderm was restored by inducing VHL expression in these cells. These results show that Drosophila tissues exhibit different sensitivities to hypoxia.


Assuntos
Drosophila melanogaster/metabolismo , Hipóxia/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Animais , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Ectoderma/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Larva/metabolismo , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Transporte Proteico , Traqueia/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
7.
Curr Biol ; 15(1): 19-23, 2005 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-15649359

RESUMO

Eukaryotic initiation factor 4E (eIF4E) controls a crucial step of translation initiation and is critical for cell growth . Biochemical studies have shown that it undergoes a regulated phosphorylation by the MAP-kinase signal-integrating kinases Mnk1 and Mnk2 . Although the role of eIF4E phosphorylation in mammalian cells has remained elusive , recent work in Drosophila has established that it is required for growth and development . Here, we demonstrate that a previously identified Drosophila kinase called Lk6 is the functional homolog of mammalian Mnk kinases. We generated lk6 loss-of-function alleles and found that eIF4E phosphorylation is dramatically reduced in lk6 mutants. Importantly, lk6 mutants exhibit reduced viability, slower development, and reduced adult size, demonstrating that Lk6 function is required for organismal growth. Moreover, we show that uniform lk6 expression rescues the lethality of eIF4E hypomorphic mutants in an eIF4E phosphorylation site-dependent manner and that the two proteins participate in a common complex in Drosophila S2 cells, confirming the functional link between Lk6 and eIF4E. This work demonstrates that Lk6 exerts a tight control on eIF4E phosphorylation and is necessary for normal growth and development.


Assuntos
Drosophila/crescimento & desenvolvimento , Drosophila/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Expressão Gênica , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Fenótipo , Sequência de Aminoácidos , Animais , Sequência de Bases , Western Blotting , Pesos e Medidas Corporais , Células Cultivadas , Proteínas de Drosophila , Feminino , Imunoprecipitação , Larva/crescimento & desenvolvimento , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Dados de Sequência Molecular , Mutagênese , Ovário/metabolismo , Fosforilação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Análise de Sequência de DNA , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...