Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 21(1): 45, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32024475

RESUMO

BACKGROUND: Current popular variant calling pipelines rely on the mapping coordinates of each input read to a reference genome in order to detect variants. Since reads deriving from variant loci that diverge in sequence substantially from the reference are often assigned incorrect mapping coordinates, variant calling pipelines that rely on mapping coordinates can exhibit reduced sensitivity. RESULTS: In this work we present GeDi, a suffix array-based somatic single nucleotide variant (SNV) calling algorithm that does not rely on read mapping coordinates to detect SNVs and is therefore capable of reference-free and mapping-free SNV detection. GeDi executes with practical runtime and memory resource requirements, is capable of SNV detection at very low allele frequency (<1%), and detects SNVs with high sensitivity at complex variant loci, dramatically outperforming MuTect, a well-established pipeline. CONCLUSION: By designing novel suffix-array based SNV calling methods, we have developed a practical SNV calling software, GeDi, that can characterise SNVs at complex variant loci and at low allele frequency thus increasing the repertoire of detectable SNVs in tumour genomes. We expect GeDi to find use cases in targeted-deep sequencing analysis, and to serve as a replacement and improvement over previous suffix-array based SNV calling methods.


Assuntos
Variação Genética , Genoma , Neoplasias/genética , Software , Algoritmos , Frequência do Gene , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Sequenciamento Completo do Genoma
2.
Artigo em Inglês | MEDLINE | ID: mdl-26955050

RESUMO

One of the key challenges facing genomics today is how to efficiently analyze the massive amounts of data produced by next-generation sequencing platforms. With general-purpose computing systems struggling to address this challenge, specialized processors such as the Field-Programmable Gate Array (FPGA) are receiving growing interest. The means by which to leverage this technology for accelerating genomic data analysis is however largely unexplored. In this paper, we present a runtime reconfigurable architecture for accelerating short read alignment using FPGAs. This architecture exploits the reconfigurability of FPGAs to allow the development of fast yet flexible alignment designs. We apply this architecture to develop an alignment design which supports exact and approximate alignment with up to two mismatches. Our design is based on the FM-index, with optimizations to improve the alignment performance. In particular, the n-step FM-index, index oversampling, a seed-and-compare stage, and bi-directional backtracking are included. Our design is implemented and evaluated on a 1U Maxeler MPC-X2000 dataflow node with eight Altera Stratix-V FPGAs. Measurements show that our design is 28 times faster than Bowtie2 running with 16 threads on dual Intel Xeon E5-2640 CPUs, and nine times faster than Soap3-dp running on an NVIDIA Tesla C2070 GPU.


Assuntos
Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Alinhamento de Sequência/métodos , Análise de Sequência de DNA/métodos , Algoritmos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...