Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 158(17)2023 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-37139999

RESUMO

The non-exponential character of the structural relaxation is considered one of the hallmarks of the glassy dynamics, and in this context, the relatively narrow shape observed by dielectric techniques for polar glass formers has attracted the attention of the community for long time. This work addresses the phenomenology and role of specific non-covalent interactions in the structural relaxation of glass-forming liquids by the study of polar tributyl phosphate. We show that dipole interactions can couple to shear stress and modify the flow behavior, preventing the occurrence of the simple liquid behavior. We discuss our findings in the general framework of glassy dynamics and the role of intermolecular interactions.

2.
Nat Commun ; 12(1): 4762, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34362934

RESUMO

Self-propelling microparticles are often proposed as synthetic models for biological microswimmers, yet they lack the internally regulated adaptation of their biological counterparts. Conversely, adaptation can be encoded in larger-scale soft-robotic devices but remains elusive to transfer to the colloidal scale. Here, we create responsive microswimmers, powered by electro-hydrodynamic flows, which can adapt their motility via internal reconfiguration. Using sequential capillary assembly, we fabricate deterministic colloidal clusters comprising soft thermo-responsive microgels and light-absorbing particles. Light absorption induces preferential local heating and triggers the volume phase transition of the microgels, leading to an adaptation of the clusters' motility, which is orthogonal to their propulsion scheme. We rationalize this response via the coupling between self-propulsion and variations of particle shape and dielectric properties upon heating. Harnessing such coupling allows for strategies to achieve local dynamical control with simple illumination patterns, revealing exciting opportunities for developing tactic active materials.

3.
Phys Chem Chem Phys ; 20(44): 27758-27765, 2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30209466

RESUMO

The impact of supramolecular aggregate formation on the shear viscosity response of hydrogen bonded liquids was investigated. In particular, we study the shear mechanical response of several monoalcohols showing exponential and non-exponential shape dielectric Debye-like relaxation. In addition to the structural relaxation, distinctive of the glass transition, and the terminal crossover to pure viscous flow, characteristic of simple liquid flow, systematic analysis of complex viscosity curves evidences the presence of an additional intermediate process between those two. While the recovery of pure viscous flow would reflect the complete relaxation of the hydrogen bonded aggregates the intermediate process correlates with the rotational dynamics of hydroxyl groups, potentially caused by the breaking of individual hydrogen bonds.

4.
Phys Chem Chem Phys ; 19(23): 15215-15226, 2017 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-28561833

RESUMO

Herein, a combined study of the molecular rotation dynamics and free volume in cis-1,4-poly(isoprene) using two external probing techniques via ESR and PALS together with relaxation dynamics of the host medium via BDS is presented. The spectral evolution of the spin probe TEMPO from simulations over a wide range from 100 K up to 300 K exhibits three different regions of its correlation time consisting of a slow regime at low temperatures followed by the molecular dynamic heterogeneity zone from T = T = 155 K = 0.82 × T up to Tc ≅ 236 K = 1.26 × T and ending with a fast regime at high temperatures with the further characteristic ESR temperatures, T = 186 K ≅ T and T = 260 K. These are in close coincidence with four characteristic PALS temperatures: T = 160 K, T = 190 K, T = 227 K, and T = 263 K. Finally, using BDS, we revealed that the high-frequency features of the structural relaxation of 1,4-PIP 0.8k were related to the observed effects in the ESR and PALS response of the liquid state.

5.
J Chem Phys ; 146(11): 114502, 2017 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-28330358

RESUMO

We have investigated the Debye-like relaxation in a series of monoalcohols (MAs) by broadband dielectric spectroscopy and thermally stimulated depolarization current techniques in order to get further insight on the time dispersion of this intriguing relaxation. Results indicate that the Debye-like relaxation of MAs is not always of exponential type and conforms well to a dispersion of Cole-Davidson type. Apart from the already reported non-exponentiality of the Debye-like relaxation in 2-hexyl-1-decanol and 2-butyl-1-octanol, a detailed analysis of the dielectric permittivity of 5-methyl-3-heptanol shows that this MA also presents some extent of dispersion on its Debye-like relaxation which strongly depends on the temperature. Results suggest that the non-exponential character of the Debye-like relaxation might be a general characteristic in the case of not so intense Debye-like relaxations relative to the α relaxation. Finally, we briefly discuss on the T-dependence and possible origin for the observed dispersion.

6.
Soft Matter ; 12(48): 9705-9727, 2016 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-27808335

RESUMO

The determination of the net charge and size of microgel particles as a function of their concentration, as well as the degree of association of ions to the microgel backbone, has been pursued in earlier studies mainly by scattering and rheology. These methods suffer from contributions due to inter-particle interactions that interfere with the characterization of single-particle properties. Here we introduce dielectric spectroscopy as an alternative experimental method to characterize microgel systems. The advantage of dielectric spectroscopy over other experimental methods is that the polarization due to mobile charges within a microgel particle is only weakly affected by inter-particle interactions. Apart from electrode polarization effects, experimental spectra on PNIPAM-co-AA [poly(N-isopropylacrylamide-co-acrylic acid)] ionic microgel particles suspended in de-ionized water exhibit three well-separated relaxation modes, which are due to the polarization of the mobile charges within the microgel particles, the diffuse double layer around the particles, and the polymer backbone. Expressions for the full frequency dependence of the electrode-polarization contribution to the measured dielectric response are derived, and a theory is proposed for the polarization resulting from the mobile charges within the microgel. Relaxation of the diffuse double layer is modeled within the realm of a cell model. The net charge and the size of the microgel particles are found to be strongly varying with concentration. A very small value of the diffusion coefficient of ions within the microgel is found, due to a large degree of chemical association of protons to the polymer backbone.

7.
J Chem Phys ; 142(21): 214504, 2015 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-26049505

RESUMO

We explore new routes for characterizing the Debye-like and α relaxation in 2-ethyl-1-hexanol (2E1H) monoalcohol by using low frequency dielectric techniques including thermally stimulated depolarization current (TSDC) techniques and isothermal depolarization current methods. In this way, we have improved the resolution of the overlapped processes making it possible the analysis of the data in terms of a mode composition as expected for a chain-like response. Furthermore the explored ultralow frequencies enabled to study dynamics at relatively low temperatures close to the glass transition (Tg). Results show, on the one hand, that Debye-like and α relaxation timescales dramatically approach to each other upon decreasing temperature to Tg. On the other hand, the analysis of partial polarization TSDC data confirms the single exponential character of the Debye-like relaxation in 2E1H and rules out the presence of Rouse type modes in the scenario of a chain-like response. Finally, on crossing the glass transition, the Debye-like relaxation shows non-equilibrium effects which are further emphasized by aging treatment and would presumably emerge as a result of the arrest of the structural relaxation below Tg.


Assuntos
Vidro/química , Hexanóis/química , Temperatura , Elétrons
8.
Phys Rev Lett ; 113(7): 078302, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25170735

RESUMO

The slowest (p=1) mode relaxation of several polyisoprenes has been experimentally isolated by thermally stimulated depolarization current techniques. Close to the glass transition the p=1 mode deviates from the exponential behavior assumed by Rouse and tube-reptation theories. This effect is found to be a consequence of the closeness of τ_{p=1} and α-relaxation time scales. The scenario resembles that of broadened fast component dynamics in polymer blends with high dynamic asymmetry and suggests a possible general interpretation in terms of the effect of local density fluctuations (α relaxation) on chain dynamics.

9.
ACS Macro Lett ; 3(11): 1215-1219, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-35610828

RESUMO

In this paper we report thermally stimulated depolarization current results on the chain and segmental dynamics of two monodisperse polyisoprenes accessing both dynamics at ultralow frequency range and exploring the relationship between segmental and chain time scales when crossing the glass transition. In this range, we have recorded experimental evidence of nonequilibrium effects on the slowest chain mode dynamics. The nonequilibrium effects seem to occur simultaneously for both chain and α-relaxation. Moreover, detailed analysis strongly indicates the recovery of an even T-dependence for the chain and α-relaxation dynamics on crossing glass transition and in the glassy state. The obtained results can be understood taking into account the different temperature dependences of the length scales involved in the segmental and chain relaxations.

10.
J Chem Phys ; 128(18): 184901, 2008 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-18532842

RESUMO

By using quasielastic neutron scattering (QENS) with isotopic labeling we have investigated the component dynamics in a miscible blend of polyethersulfone (PES) and poly(ethylene oxide) (PEO) with 75% content in weight of PES. Due to the large difference in the glass-transition temperatures, T(g)'s, of the two polymers (T(g) (PEO) approximately equal to 220 K, T(g) (PES) approximately equal to 382 K) the dynamic asymmetry in the system dramatically increases when approaching the average T(g) of the blend, . For the fast (PEO) component, this leads to a behavior which hints a crossover from typical glass-forming liquidlike dynamics at high temperatures to confined dynamics close to induced by the freezing of the segmental motions of the slow PES. The features of the confined PEO motion observed by QENS are similar to those of the secondary gamma-relaxation detected for pure (semicrystalline) PEO. A neutron diffraction study of the short-range order of the homopolymers and the blend suggests that this coincidence could be due to similarities in the intermolecular packing of PEO and PES polymers.

11.
J Chem Phys ; 123(1): 014907, 2005 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-16035869

RESUMO

We have investigated the dynamics of phenylene rings in glassy bisphenol-A (BPA) polycarbonate (PC) by means of quasielastic neutron scattering. Taking advantage of selective deuteration of the samples, we have studied the incoherent scattering of hydrogens in phenylene rings on the one hand, and on the other hand the coherent quasielastic scattering of all the atoms in the sample. Two different types of neutron spectrometers, time of flight and backscattering, were used in order to cover a wide dynamic range, which extends from microscopic (approximately 10(-13) s) to mesoscopic (approximately 10(-9) s) times. Moreover, neutron-diffraction experiments with polarization analysis were carried out in order to characterize the structural features, and the relative coherent and incoherent contributions of the samples investigated. In contrast with previous studies of phenylene ring dynamics in BPA polysulfone performed by us also by neutron scattering, phenylene rings in BPA PC exhibit an "extra" motion in addition to those found for BPA polysulfone's phenylene rings. This extra motion of the rings in PC perfectly correlates with the main carbonate group motion followed by dielectric spectroscopy and allows us to (i) consistently interpret the PC's gamma relaxation in terms of two different motions; and (ii) experimentally confirm the relation between the motion of phenylene rings and carbonate groups within BPA PC formerly predicted by computational methods.

12.
J Chem Phys ; 120(1): 423-36, 2004 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-15267305

RESUMO

We have investigated the dynamics of phenylene rings in a glassy polysulfone (bisphenol-A-polysulfone) by means of quasielastic neutron scattering. Nowadays it is well known that these molecular motions are directly connected with the mechanical properties of engineering thermoplastics in general. The particular system investigated by us has the advantage that by selective deuteration of the methyl groups, the neutron scattering measured is dominated by the incoherent contribution from the protons in the phenylene rings. In this way, the dynamics of such molecular groups can be experimentally isolated. Two different types of neutron spectrometers: time of flight and backscattering, were used in order to cover a wide dynamic range, which extends from microscopic (10(-13) s) to mesoscopic (10(-9) s) times. Moreover, neutron diffraction experiments with polarization analysis were also carried out in order to characterize the structural features of the sample investigated. Fast oscillations of increasing amplitude with temperature and pi-flips are identified for phenylene rings motions. Due to the structural disorder characteristic of the amorphous state, both molecular motions display a broad distribution of relaxation times, which spreads over several orders of magnitude. Based on the results obtained, we propose a model for phenylene rings dynamics, which combines the two kinds of molecular motions identified. This model nicely describes the neutron scattering results in the whole dynamic range investigated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...