Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biology (Basel) ; 10(4)2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918970

RESUMO

Intermittent rivers and ephemeral streams (IRES) are increasingly studied because of their often-unique aquatic and terrestrial biodiversity, biogeochemical processes and associated ecosystem services. This study is the first to examine the hydrological, physicochemical and taxonomic variability during the dry-wet transition of an intermittent river in the Chilean Mediterranean Zone. Based on 30-years of river monitoring data and the TREHS tool, the hydrology of the river was characterised. Overall, the river shows a significant reduction in streamflow (-0.031 m3/s per year) and a substantial increase of zero flow days (+3.5 days per year). During the transition of hydrological states, variations were observed in the environmental conditions and invertebrate communities. During the drying phase, abundance, richness, and diversity were highest, while species turn-over was highest during base flow conditions. The disconnected pools and the flow resumption phases were characterised by high proportions of lentic taxa and non-insects, such as the endemic species of bivalves, gastropods, and crustaceans, highlighting the relevance of disconnected pools as refuges. Future climatic change scenarios are expected to impact further the hydrology of IRES, which could result in the loss of biodiversity. Biomonitoring and conservation programmes should acknowledge these important ecosystems.

2.
Sci Total Environ ; 766: 144323, 2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33418255

RESUMO

Connectivity plays a crucial role in maintaining the structural and functional attributes of river networks. Therefore, the loss of connectivity (fragmentation) alters the functioning and diversity patterns of the biota at local and regional scales. The global hydropower boom is one of the main drivers of river network fragmentation, with significant effects on the diversity of riverine biota. Analyses of beta diversity of fish assemblages in rivers with different degrees of fragmentation can give new insights into mechanisms that contribute to the responses of these assemblages to fragmentation. Here, fish beta diversity within six river networks of central Chile with different levels of fragmentation was studied to assess the responses of fish assemblages to fragmentation. A hypothesis of a significant effect of fragmentation on the beta diversity of native and non-native fish in riffles and pools was tested. This effect is expected to be modulated by both changes in environmental heterogeneity and direct obstruction of natural dispersal routes. Beta diversity based on variation of assemblage structure and environmental heterogeneity showed significant differences among river networks. Fish beta diversity showed a clear response to fragmentation in recently fragmented rivers. Specifically, the beta diversity of native fishes in pools and non-native fishes in riffles decreased with increase of the ratio between the longest non-fragmented sections of the river network to the total length of the network. These effects of fragmentation on fish assemblages were modulated by the biological features of each species, and open-water species were most severely affected. These results have significant implications for planning of the placement of new barriers in river networks subjected to hydropower boom. Planning of the placement of new barriers should consider the maintenance of long, connected sections within river networks in order to minimise the effects of fragmentation on fish biodiversity.


Assuntos
Ecossistema , Rios , Animais , Biodiversidade , Chile , Peixes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...