Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 476: 135134, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38986413

RESUMO

The increased environmental presence of micro-/nanoplastics (MNPLs) and the potential health risks associated with their exposure classify them as environmental pollutants with special environmental and health concerns. Consequently, there is an urgent need to investigate the potential risks associated with secondary MNPLs. In this context, using "true-to-life" MNPLs, resulting from the laboratory degradation of plastic goods, may be a sound approach. These non-commercial secondary MNPLs must be labeled to track their presence/journeys inside cells or organisms. Because the cell internalization of MNPLs is commonly analyzed using fluorescence techniques, the use of fluorescent dyes may be a sound method to label them. Five different compounds comprising two chemical dyes (Nile Red and Rhodamine-B), one optical brightener (Opticol), and two industrial dyes (Amarillo Luminoso and iDye PolyPink) were tested to determine their potential for such applications. Using commercial standards of polystyrene nanoplastics (PSNPLs) with an average size of 170 nm, different characteristics of the selected dyes such as the absence of impact on cell viability, specificity for plastic staining, no leaching, and lack of interference with other fluorochromes were analyzed. Based on the overall data obtained in the wide battery of assays performed, iDye PolyPink exhibited the most advantages, with respect to the other compounds, and was selected to effectively label "true-to-life" MNPLs. These advantages were confirmed using a proposed protocol, and labeling titanium-doped PETNPLs (obtained from the degradation of milk PET plastic bottles), as an example of "true-to-life" secondary NPLs. These results confirmed the usefulness of iDye PolyPink for labeling MNPLs and detecting cell internalization.

2.
J Hazard Mater ; 475: 134900, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38878440

RESUMO

The expected increments in the production/use of bioplastics, as an alternative to petroleum-based plastics, require a deep understanding of their potential environmental and health hazards, mainly as nanoplastics (NPLs). Since one important exposure route to NPLs is through inhalation, this study aims to determine the fate and effects of true-to-life polylactic acid nanoplastics (PLA-NPLs), using the in vitro Calu-3 model of bronchial epithelium, under air-liquid interphase exposure conditions. To determine the harmful effects of PLA-NPLs in a more realistic scenario, both acute (24 h) and long-term (1 and 2 weeks) exposures were used. Flow cytometry results indicated that PLA-NPLs internalized easily in the barrier (∼10 % at 24 h and ∼40 % after 2 weeks), which affected the expression of tight-junctions formation (∼50 % less vs control) and the mucus secretion (∼50 % more vs control), both measured by immunostaining. Interestingly, significant genotoxic effects (DNA breaks) were detected by using the comet assay, with long-term effects being more marked than acute ones (7.01 vs 4.54 % of DNA damage). When an array of cellular proteins including cytokines, chemokines, and growth factors were used, a significant over-expression was mainly found in long-term exposures (∼20 proteins vs 5 proteins after acute exposure). Overall, these results described the potential hazards posed by PLA-NPLs, under relevant long-term exposure scenarios, highlighting the advantages of the model used to study bronchial epithelium tissue damage, and signaling endpoints related to inflammation.


Assuntos
Poliésteres , Poliésteres/toxicidade , Poliésteres/química , Humanos , Linhagem Celular , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Citocinas/metabolismo , Microplásticos/toxicidade , Dano ao DNA/efeitos dos fármacos , Nanopartículas/toxicidade , Nanopartículas/química , Epitélio/efeitos dos fármacos , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/metabolismo , Células Epiteliais/efeitos dos fármacos , Junções Íntimas/efeitos dos fármacos
3.
Environ Pollut ; 348: 123823, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38513942

RESUMO

The increasing presence of secondary micro/nanoplastics (MNPLs) in the environment requires knowing if they represent a real health concern. To such end, an important point is to test representative MNPLs such as the denominated true-to-life MNPLs, resulting from the degradation of plastic goods in lab conditions. In this study, we have used polyethylene terephthalate (PET) NPLs resulting from the degradation of PET water bottles. Since inhalation is an important exposure route to environmental MNPLS, we have used mouse alveolar macrophages (MH-S) as a target cell, and the study focused only on the cells that have internalized them. This type of approach is novel as it may capture the realistic adverse effects of PETNPLs only in the internalized cells, thereby mitigating any biases while assessing the risk of these MNPLs. Furthermore, the study utilized a set of biomarkers including intracellular reactive oxygen species (ROS) levels, variations on the mitochondrial membrane potential values, and the macrophage polarization to M1 (pro-inflammatory response) and M2 (anti-proinflammatory response) as possible cellular effects due to PETNPLs in only the cells that internalized PETNPLs. After exposures lasting for 3 and 24 h to a range of concentrations (0, 25, 50, and 100 µg/mL) the results indicate that no toxicity was induced despite the 100% internalization observed at the highest concentration. Significant intracellular levels of ROS were observed, mainly at exposures lasting for 24 h, in an indirect concentration-effect relationship. Interestingly, a reduction in the mitochondrial membrane potential was observed, but only at exposures lasting for 24 h, but without a clear concentration-effect relationship. Finally, PETNPL exposure shows a significant polarization from M0 to M1 and M2 subtypes. Polarization to M1 (pro-inflammatory stage) was more marked and occurred at both exposure times. Polarization to M2 (anti-inflammatory stage) was only observed after exposures lasting for 24 h. Due to the relevance of the described biomarkers, our results underscore the need for further research, to better understand the health implications associated with MNPL exposure.


Assuntos
Macrófagos Alveolares , Microplásticos , Humanos , Animais , Camundongos , Polietilenotereftalatos/toxicidade , Espécies Reativas de Oxigênio , Biomarcadores
4.
Biomark Res ; 6: 11, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29564133

RESUMO

BACKGROUND: Yin Yang 1 (YY1) is a transcription factor that plays an important role during all stages of B cell differentiation. Several studies reported upregulation of YY1 in B cell derived lymphoma, indicating that it might act as an oncogene. Furthermore, aberrant YY1 expression has been associated with survival in some entities of B cell non-Hodgkin lymphoma (B-NHL), suggesting that YY1 could be a valuable biomarker in B-NHL. However, studies are controversial and methodologically disparate, partially because some studies are based on transcript levels while others rely on YY1 protein data. Therefore, we aimed to investigate the dependence of YY1 protein levels on YY1 transcription. METHODS: A panel of human cell lines representing different B-NHL subtypes was used to test for the correlation of YY1 mRNA and protein levels which were determined by quantitative PCR and immunoblotting. To analyze YY1 mRNA and YY1 protein stability cells were treated with actinomycin-D and cycloheximide, respectively. siRNAs were transfected to knockdown YY1. Kaplan-Meier survival analyses were performed with data from published patient cohorts. Pearson's correlation analyses were assessed and statistical power was examined by Student's t-test. RESULTS: In the analyzed panel of B-NHL cell lines YY1 transcript levels do not correlate with their cellular protein amounts. YY1 protein levels were unaffected by transient block of transcription or by targeting YY1 mRNA using siRNA. Additionally, global inhibition of translation up to 48 h did not alter protein levels of YY1, indicating that YY1 is a highly stable protein in B-NHL. Furthermore, in a retrospective analysis of two different B-NHL cohorts, YY1 transcript levels had no impact on patients' survival probabilities. CONCLUSIONS: Our results point out the necessity to focus on YY1 protein expression to understand the potential role of YY1 as an oncogene and to unravel its suitability as clinical biomarker in B-NHL.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...