Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell Biol ; 36(17): 2226-35, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27247266

RESUMO

Processing bodies (PBs) are conserved cytoplasmic aggregations of translationally repressed mRNAs assembled with mRNA decay factors. The aggregation of mRNA-protein (mRNP) complexes into PBs involves interactions between low-complexity regions of protein components of the mRNPs. In Saccharomyces cerevisiae, the carboxy (C)-terminal Q/N-rich domain of the Lsm4 subunit of the Lsm1-7 complex plays an important role in PB formation, but the C-terminal domain of Lsm4 in most eukaryotes is an RGG domain rather than Q/N rich. Here we show that the Lsm4 RGG domain promotes PB accumulation in human cells and that symmetric dimethylation of arginines within the RGG domain stimulates this process. A mutant Lsm4 protein lacking the RGG domain failed to rescue PB formation in cells depleted of endogenous Lsm4, although this mutant protein retained the ability to assemble with Lsm1-7, associate with decapping factors, and promote mRNA decay and translational repression. Mutation of the symmetrically dimethylated arginines within the RGG domain impaired the ability of Lsm4 to promote PB accumulation. Depletion of PRMT5, the primary protein arginine methyltransferase responsible for symmetric arginine dimethylation, including Lsm4, resulted in loss of PBs. We also uncovered the histone acetyltransferase 1 (HAT1)-RBBP7 lysine acetylase complex as an interaction partner of the Lsm4 RGG domain but found no evidence of a role for this complex in PB metabolism. Together, our findings suggest a stimulatory role for posttranslational modifications in PB accumulation and raise the possibility that mRNP dynamics are posttranslationally regulated.


Assuntos
Arginina/metabolismo , Grânulos Citoplasmáticos/metabolismo , Histona Acetiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Ribonucleoproteínas Nucleares Pequenas/química , Ribonucleoproteínas/metabolismo , Arginina/genética , Regulação da Expressão Gênica , Humanos , Metilação , Mutação , Domínios Proteicos , Processamento de Proteína Pós-Traducional , Proteína-Arginina N-Metiltransferases/genética , Capuzes de RNA/metabolismo , Estabilidade de RNA , RNA Mensageiro/metabolismo , Ribonucleoproteínas Nucleares Pequenas/genética , Ribonucleoproteínas Nucleares Pequenas/metabolismo
2.
Biochim Biophys Acta ; 1829(6-7): 580-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23287066

RESUMO

The regulation of mRNA degradation is critical for proper gene expression. Many major pathways for mRNA decay involve the removal of the 5' 7-methyl guanosine (m(7)G) cap in the cytoplasm to allow for 5'-to-3' exonucleolytic decay. The most well studied and conserved eukaryotic decapping enzyme is Dcp2, and its function is aided by co-factors and decapping enhancers. A subset of these factors can act to enhance the catalytic activity of Dcp2, while others might stimulate the remodeling of proteins bound to the mRNA substrate that may otherwise inhibit decapping. Structural studies have provided major insights into the mechanisms by which Dcp2 and decapping co-factors activate decapping. Additional mRNA decay factors can function by recruiting components of the decapping machinery to target mRNAs. mRNA decay factors, decapping factors, and mRNA substrates can be found in cytoplasmic foci named P bodies that are conserved in eukaryotes, though their function remains unknown. In addition to Dcp2, other decapping enzymes have been identified, which may serve to supplement the function of Dcp2 or act in independent decay or quality control pathways. This article is part of a Special Issue entitled: RNA Decay mechanisms.


Assuntos
Endorribonucleases/genética , Capuzes de RNA/genética , Estabilidade de RNA/genética , Catálise , Citoplasma , Endorribonucleases/química , Eucariotos/enzimologia , Eucariotos/genética , Humanos , Conformação Proteica , Estrutura Terciária de Proteína , Análogos de Capuz de RNA/química , Análogos de Capuz de RNA/genética , Capuzes de RNA/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...