Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 39(23): 8091-8099, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37267477

RESUMO

Increased gas adsorption in a series of post-synthetically modified metal-organic frameworks (MOFs) of the type HKUST-1 was achieved by the partial cation exchange process. Manipulation of post-synthetic conditions demonstrates high tunability in the site substitution and gas adsorption properties during the dynamic equilibrium process. In this work, post-synthetic modification of Cu3(BTC)2 is carried on by exposure to TM2+ solutions (TM = Mn, Fe, Co, Ni) at different time intervals. The crystal structure, composition, and morphology were studied by powder X-ray diffraction, Fourier-transform infrared spectroscopy, inductively coupled plasma optical emission spectroscopy, and scanning electron microscopy. Structural analysis supports the retention of the crystal structure and partial substitution of the Cu metal nodes within the framework. A linear increase in the transmetalation process is observed with Fe and Co with a maximum percentage of 39 and 18%, respectively. Conversely, relatively low cation exchange is observed with Mn having a maximum percentage of 2.40% and Ni with only 2.02%. Gas adsorption measurements and surface area analysis were determined for each species. Interestingly, (Cu/Mn)3(BTC)2 revealed the highest CO2 adsorption capacity of 5.47 mmol/g, compared to 3.08 mmol/g for Cu3(BTC)2. The overall increased gas adsorption can be attributed to the formation of defects in the crystal structure during the cation exchange process. These results demonstrate the outstanding potential of post-synthetic ion exchange as a general approach to fine-tuning the physical properties of existing MOF architectures.

2.
Sci Total Environ ; 738: 139213, 2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-32534278

RESUMO

A series of highly efficient adsorbents were developed using Ni3(BTC)2 and Co3(BTC)2 metal-organic frameworks (MOFs) and Fe3O4 magnetic nanoparticles (MNPs) to functionalize graphene oxide (GO). XRD results show high crystallinity of the prepared nanomaterials and the successful decoration of Ni3(BTC)2 and Co3(BTC)2 MOFs over the GO substrate (BTC = benzene-1,3,5-tricarboxylic acid). SEM and TEM imaging show the successful formation of nanoscale MOFs and Fe3O4 MNPs over GO. IR spectroscopy supports the characterization and successful preparation of the Fe3O4/MOF@GO hybrid composite nanoadsorbents. The prepared composite nanoadsorbents were used to sorb Methylene Blue (MB) as a model for common organic pollutants in water and common ions (Na+, Ca2+, Mg2+, SO42-, SiO32-) from a brackish water model. The adsorbed concentration at equilibrium of MB of the prepared composite nanoadsorbents increases by an average of 30.52 and 13.75 mg/g for the Co and Ni composite, respectively, when compared to the MOFs parent materials. The adsorbed amount of sulfate ions increases by 92.1 mg/g for the Co composite and 112.1 mg/g for the Ni composite, when compared to graphene oxide. This adsorption enhancement is attributed to suppressed aggregation through increased dispersive forces in the MOFs due to the presence of GO, formation of nanoscale MOFs over the GO platform, and the hindering of stacking of the graphene layers by the MOFs. Leaching tests show that the release of Co and Ni ions to water is reduced from 105.2 and 220 mg/L, respectively, in the parent MOF materials to 0.5 and 16.4 mg/L, respectively, in the composite nanoadsorbents. These findings show that the newly developed composite nanoadsorbents can sorb organic pollutants, and target sulfate and silicate anions, which makes them suitable candidates for water and wastewater treatments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...