Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Biol ; 502: 63-67, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37433390

RESUMO

Genome manipulation methods in C. elegans require microinjecting DNA or ribonucleoprotein complexes into the microscopic core of the gonadal syncytium. These microinjections are technically demanding and represent a key bottleneck for all genome engineering and transgenic approaches in C. elegans. While there have been steady improvements in the ease and efficiency of genetic methods for C. elegans genome manipulation, there have not been comparable advances in the physical process of microinjection. Here, we report a simple and inexpensive method for handling worms using a paintbrush during the injection process that nearly tripled average microinjection rates compared to traditional worm handling methods. We found that the paintbrush increased injection throughput by substantially increasing both injection speeds and post-injection survival rates. In addition to dramatically and universally increasing injection efficiency for experienced personnel, the paintbrush method also significantly improved the abilities of novice investigators to perform key steps in the microinjection process. We expect that this method will benefit the C. elegans community by increasing the speed at which new strains can be generated and will also make microinjection-based approaches less challenging and more accessible to personnel and labs without extensive experience.


Assuntos
Caenorhabditis elegans , Células Germinativas , Animais , Caenorhabditis elegans/genética , Microinjeções/métodos , Animais Geneticamente Modificados , DNA/genética , Sistemas CRISPR-Cas
2.
Genes (Basel) ; 14(4)2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37107705

RESUMO

Due to the prevalence of congenital heart disease in the human population, determining the role of variants in congenital heart disease (CHD) can give a better understanding of the cause of the disorder. A homozygous missense mutation in the LDL receptor-related protein 1 (Lrp1) in mice was shown to cause congenital heart defects, including atrioventricular septal defect (AVSD) and double outlet right ventricle (DORV). Integrative analysis of publicly available single-cell RNA sequencing (scRNA-seq) datasets and spatial transcriptomics of human and mouse hearts indicated that LRP1 is predominantly expressed in mesenchymal cells and mainly located in the developing outflow tract and atrioventricular cushion. Gene burden analysis of 1922 CHD individuals versus 2602 controls with whole-exome sequencing showed a significant excess of rare damaging LRP1 mutations in CHD (odds ratio (OR) = 2.22, p = 1.92 × 10-4), especially in conotruncal defect with OR of 2.37 (p = 1.77 × 10-3) and atrioventricular septal defect with OR of 3.14 (p = 0.0194). Interestingly, there is a significant relationship between those variants that have an allele frequency below 0.01% and atrioventricular septal defect, which is the phenotype observed previously in a homozygous N-ethyl-N-nitrosourea (ENU)-induced Lrp1 mutant mouse line.


Assuntos
Cardiopatias Congênitas , Defeitos dos Septos Cardíacos , Humanos , Camundongos , Animais , Cardiopatias Congênitas/genética , Defeitos dos Septos Cardíacos/genética , Fenótipo , Mutação , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética
3.
bioRxiv ; 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36993165

RESUMO

Genome manipulation methods in C. elegans require microinjecting DNA or ribonucleoprotein complexes into the microscopic core of the gonadal syncytium. These microinjections are technically demanding and represent a key bottleneck for all genome engineering and transgenic approaches in C. elegans . While there have been steady improvements in the ease and efficiency of genetic methods for C. elegans genome manipulation, there have not been comparable advances in the physical process of microinjection. Here, we report a simple and inexpensive method for handling worms using a paintbrush during the injection process that nearly tripled average microinjection rates compared to traditional worm handling methods. We found that the paintbrush increased injection throughput by substantially increasing both injection speeds and post-injection survival rates. In addition to dramatically and universally increasing injection efficiency for experienced personnel, the paintbrush method also significantly improved the abilities of novice investigators to perform key steps in the microinjection process. We expect that this method will benefit the C. elegans community by increasing the speed at which new strains can be generated and will also make microinjection-based approaches less challenging and more accessible to personnel and labs without extensive experience.

4.
Int J Mol Sci ; 22(16)2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34445520

RESUMO

Endocytic trafficking is an under-appreciated pathway in cardiac development. Several genes related to endocytic trafficking have been uncovered in a mutagenic ENU screen, in which mutations led to congenital heart defects (CHDs). In this article, we review the relationship between these genes (including LRP1 and LRP2) and cardiac neural crest cells (CNCCs) during cardiac development. Mice with an ENU-induced Lrp1 mutation exhibit a spectrum of CHDs. Conditional deletion using a floxed Lrp1 allele with different Cre drivers showed that targeting neural crest cells with Wnt1-Cre expression replicated the full cardiac phenotypes of the ENU-induced Lrp1 mutation. In addition, LRP1 function in CNCCs is required for normal OFT lengthening and survival/expansion of the cushion mesenchyme, with other cell lineages along the NCC migratory path playing an additional role. Mice with an ENU-induced and targeted Lrp2 mutation demonstrated the cardiac phenotype of common arterial trunk (CAT). Although there is no impact on CNCCs in Lrp2 mutants, the loss of LRP2 results in the depletion of sonic hedgehog (SHH)-dependent cells in the second heart field. SHH is known to be crucial for CNCC survival and proliferation, which suggests LRP2 has a non-autonomous role in CNCCs. In this article, other endocytic trafficking proteins that are associated with CHDs that may play roles in the NCC pathway during development, such as AP1B1, AP2B1, FUZ, MYH10, and HECTD1, are reviewed.


Assuntos
Etilnitrosoureia/efeitos adversos , Cardiopatias Congênitas/genética , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Animais , Linhagem da Célula , Modelos Animais de Doenças , Endocitose , Cardiopatias Congênitas/induzido quimicamente , Camundongos , Mutação , Crista Neural/metabolismo , Transdução de Sinais
5.
Commun Biol ; 3(1): 312, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32546759

RESUMO

The recent recovery of mutations in vesicular trafficking genes causing congenital heart disease (CHD) revealed an unexpected role for the endocytic pathway. We now show that mice with a C4232R missense mutation in Low density lipoprotein receptor related protein 1 (LRP1) exhibit atrioventricular septal defects with double outlet right ventricle. Lrp1m/m mice exhibit shortened outflow tracts (OFT) and dysmorphic hypocellular cushions with reduced proliferation and increased apoptosis. Lrp1m/m embryonic fibroblasts show decreased cell motility and focal adhesion turnover associated with retention of mutant LRP1 in endoplasmic reticulum and reduced LRP1 expression. Conditional deletion of Lrp1 in cardiac neural crest cells (CNC) replicates the full CHD phenotype. Cushion explants showed defective cell migration, with gene expression analysis indicating perturbation of Wnt and other signaling pathways. Thus, LRP1 function in CNCs is required for normal OFT development with other cell lineages along the CNC migratory path playing a supporting role.


Assuntos
Cardiopatias Congênitas/genética , Coração/embriologia , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Mutação de Sentido Incorreto , Crista Neural/citologia , Animais , Linhagem da Célula , Movimento Celular/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Coração/diagnóstico por imagem , Cardiopatias Congênitas/patologia , Defeitos dos Septos Cardíacos/genética , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Miocárdio/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...