Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(4)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38400372

RESUMO

When it comes to harvesting operations, precision agriculture needs to consider both combine harvester technology and the precise execution of the process to eliminate harvest losses and minimize out-of-work time. This work aims to propose a complete control framework defined by a two-layer-based algorithm and a simulation environment suitable for quantitative harvest loss, time, and consumption analyses. In detail, the path-planning layer shows suitable harvesting techniques considering field boundaries and irregularities, while the path-tracking layer presents a vision-guided Stanley Lateral Controller. In order to validate the developed control framework, challenging driving scenarios were created using IPG-CarMaker software to emulate wheat harvesting operations. Results showed the effectiveness of the designed controller to follow the reference trajectory under regular field conditions with zero harvest waste and minimum out-of-work time. Whereas, in presence of harsh road irregularities, the reference trajectory should be re-planned by either selecting an alternative harvesting method or overlapping the harvester header by some distance to avoid missing crops. Quantitative and qualitative comparisons between the two harvesting techniques as well as a relationship between the level of irregularities and the required overlap will be presented. Eventually, a Driver-in-the-loop (DIL) framework is proposed as a methodology to compare human and autonomous driving.

2.
Sensors (Basel) ; 23(16)2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37631673

RESUMO

In recent years, the research on object detection and tracking is becoming important for the development of advanced driving assistance systems (ADASs) and connected autonomous vehicles (CAVs) aiming to improve safety for all road users involved. Intersections, especially in urban scenarios, represent the portion of the road where the most relevant accidents take place; therefore, this work proposes an I2V warning system able to detect and track vehicles occupying the intersection and representing an obstacle for other incoming vehicles. This work presents a localization algorithm based on image detection and tracking by a single camera installed on a roadside unit (RSU). The vehicle position in the global reference frame is obtained thanks to a sequence of linear transformations utilizing intrinsic camera parameters, camera height, and pitch angle to obtain the vehicle's distance from the camera and, thus, its global latitude and longitude. The study brings an experimental analysis of both the localization accuracy, with an average error of 0.62 m, and detection reliability in terms of false positive (1.9%) and missed detection (3.6%) rates.

3.
Sensors (Basel) ; 23(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37571669

RESUMO

The recent advancements in Intelligent Transportation Systems (ITS) have revealed significant potential for enhancing traffic management through Advanced Driver Assist Systems (ADASs), with benefits for both safety and environment. This research paper proposes a vehicle localization technique based on Kalman filtering, as accurate positioning of the ego-vehicle is essential for the proper functioning of the Traffic Light Advisor (TLA) system. The aim of the TLA is to calculate the most suitable speed to safely reach and pass the first traffic light in front of the vehicle and subsequently keep that velocity constant to overcome the following traffic light, thus allowing safer and more efficient driving practices, thereby reducing safety risks, and minimizing energy consumption. To overcome Global Positioning Systems (GPS) limitations encountered in urban scenarios, a multi-rate sensor fusion approach based on the Kalman filter with map matching and a simple kinematic one-dimensional model is proposed. The experimental results demonstrate an estimation error below 0.5 m on urban roads with GPS signal loss areas, making it suitable for TLA application. The experimental validation of the Traffic Light Advisor system confirmed the expected benefits with a 40% decrease in energy consumption compared to unassisted driving.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...