Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Geophys Res Planets ; 128(1): e2022JE007480, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37034458

RESUMO

The pressure sensors on Mars rover Perseverance measure the pressure field in the Jezero crater on regular hourly basis starting in sol 15 after landing. The present study extends up to sol 460 encompassing the range of solar longitudes from L s  âˆ¼ 13°-241° (Martian Year (MY) 36). The data show the changing daily pressure cycle, the sol-to-sol seasonal evolution of the mean pressure field driven by the CO2 sublimation and deposition cycle at the poles, the characterization of up to six components of the atmospheric tides and their relationship to dust content in the atmosphere. They also show the presence of wave disturbances with periods 2-5 sols, exploring their baroclinic nature, short period oscillations (mainly at night-time) in the range 8-24 min that we interpret as internal gravity waves, transient pressure drops with duration ∼1-150 s produced by vortices, and rapid turbulent fluctuations. We also analyze the effects on pressure measurements produced by a regional dust storm over Jezero at L s  âˆ¼ 155°.

2.
Geophys Res Lett ; 49(17): e2022GL099776, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36245894

RESUMO

Observations by several cameras on the Perseverance rover showed a 22° scattering halo around the Sun over several hours during northern midsummer (solar longitude 142°). Such a halo has not previously been seen beyond Earth. The halo occurred during the aphelion cloud belt season and the cloudiest time yet observed from the Perseverance site. The halo required crystalline water-ice cloud particles in the form of hexagonal columns large enough for refraction to be significant, at least 11 µm in diameter and length. From a possible 40-50 km altitude, and over the 3.3 hr duration of the halo, particles could have fallen 3-12 km, causing downward transport of water and dust. Halo-forming clouds are likely rare due to the high supersaturation of water that is required but may be more common in northern subtropical regions during northern midsummer.

3.
J Geophys Res Planets ; 127(12): e2022JE007523, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37033152

RESUMO

Wind speeds measured by the Mars 2020 Perseverance rover in Jezero crater were fitted as a Weibull distribution. InSight wind data acquired in Elysium Planitia were also used to contextualize observations. Jezero winds were found to be much calmer on average than in previous landing sites, despite the intense aeolian activity observed. However, a great influence of turbulence and wave activity was observed in the wind speed variations, thus driving the probability of reaching the highest wind speeds at Jezero, instead of sustained winds driven by local, regional, or large-scale circulation. The power spectral density of wind speed fluctuations follows a power-law, whose slope deviates depending on the time of day from that predicted considering homogeneous and isotropic turbulence. Daytime wave activity is related to convection cells and smaller eddies in the boundary layer, advected over the crater. The signature of convection cells was also found during dust storm conditions, when prevailing winds were consistent with a tidal drive. Nighttime fluctuations were also intense, suggesting strong mechanical turbulence. Convective vortices were usually involved in rapid wind fluctuations and extreme winds, with variations peaking at 9.2 times the background winds. Transient high wind events by vortex-passages, turbulence, and wave activity could be driving aeolian activity at Jezero. We report the detection of a strong dust cloud of 0.75-1.5 km in length passing over the rover. The observed aeolian activity had major implications for instrumentation, with the wind sensor suffering damage throughout the mission, probably due to flying debris advected by winds.

4.
Space Sci Rev ; 217(3): 48, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34776548

RESUMO

NASA's Mars 2020 (M2020) rover mission includes a suite of sensors to monitor current environmental conditions near the surface of Mars and to constrain bulk aerosol properties from changes in atmospheric radiation at the surface. The Mars Environmental Dynamics Analyzer (MEDA) consists of a set of meteorological sensors including wind sensor, a barometer, a relative humidity sensor, a set of 5 thermocouples to measure atmospheric temperature at ∼1.5 m and ∼0.5 m above the surface, a set of thermopiles to characterize the thermal IR brightness temperatures of the surface and the lower atmosphere. MEDA adds a radiation and dust sensor to monitor the optical atmospheric properties that can be used to infer bulk aerosol physical properties such as particle size distribution, non-sphericity, and concentration. The MEDA package and its scientific purpose are described in this document as well as how it responded to the calibration tests and how it helps prepare for the human exploration of Mars. A comparison is also presented to previous environmental monitoring payloads landed on Mars on the Viking, Pathfinder, Phoenix, MSL, and InSight spacecraft.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...