Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 18298, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36316385

RESUMO

This communication presents a polarization reconfigurable antenna array (PRAA) with Multi-input Multi-output (MIMO) formation for 5th generation (5G) millimeter wave (mm-Wave) communications. At first a single corner curtailed diagonal slotted cylindrical patch is printed on Roger RT Duriod 5880 and the overall size of the single antenna is 12 × 12 × 0.787 mm3. The circular polarization (CP) is realized by adding the diagonal slot in the circular patch. The antenna design is extended into two elements antenna array which occupies 20 × 20 × 0.787 mm3 footprint. The collection is formed using a T-shaped power divider/combiner. Pin-diodes are integrated with the patches to switch the polarization state between LP (Linear polarization) and CP radiation. The edge-to-edge distance between antenna elements is 6 mm. The design covers the 25.2-29.4 GHz band, and the maximum peak gain is 11.5 dBi. Moreover, a two-port (2 × 2) MIMO design is formed to increase the channel capacity. To isolate the ports, a sin-like slot is engraved in the ground, defected ground structure (DGS) technique of mutual coupling reduction; it can easily be implemented and increases the design efficiency. The port isolation is well above 30 dB for the entire operating band. Moreover, the Mean Effective Gain (MEG), Diversity Gain (DG), and Envelope Correlation Coefficient (ECC) are investigated, which are key performance metrics of MIMO. A prototype of the realized MIMO antenna system is fabricated, and the simulated outcomes carried out by Computer Simulation Technology (CST) tools are validated by experimental findings.

2.
Sensors (Basel) ; 16(11)2016 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-27827905

RESUMO

In this paper, a novel routing strategy to cater the energy consumption and delay sensitivity issues in deep underwater wireless sensor networks is proposed. This strategy is named as ESDR: Event Segregation based Delay sensitive Routing. In this strategy sensed events are segregated on the basis of their criticality and, are forwarded to their respective destinations based on forwarding functions. These functions depend on different routing metrics like: Signal Quality Index, Localization free Signal to Noise Ratio, Energy Cost Function and Depth Dependent Function. The problem of incomparable values of previously defined forwarding functions causes uneven delays in forwarding process. Hence forwarding functions are redefined to ensure their comparable values in different depth regions. Packet forwarding strategy is based on the event segregation approach which forwards one third of the generated events (delay sensitive) to surface sinks and two third events (normal events) are forwarded to mobile sinks. Motion of mobile sinks is influenced by the relative distribution of normal nodes. We have also incorporated two different mobility patterns named as; adaptive mobility and uniform mobility for mobile sinks. The later one is implemented for collecting the packets generated by the normal nodes. These improvements ensure optimum holding time, uniform delay and in-time reporting of delay sensitive events. This scheme is compared with the existing ones and outperforms the existing schemes in terms of network lifetime, delay and throughput.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...