Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Image Process ; 22(12): 5385-94, 2013 12.
Artigo em Inglês | MEDLINE | ID: mdl-24236301

RESUMO

Prostate cancer localization using supervised classification techniques has aroused considerable interest in medical imaging community in recent years. However, it is crucial to have an accurate training data set for supervised classification techniques. Since different devices with, e.g., different protocols and/or field strengths cause different intensity profiles, each device/protocol must have an accompanying training data set, which is very costly to obtain. It is highly desirable to adapt the existing classifier(s) trained for one device/protocol to help classify data coming from another device/protocol. In this paper, we propose a novel method that has the ability to design classifiers obtained from one imaging protocol and/or MRI device to be used on a data set from another protocol and/or imaging device. As an example problem, we consider prostate cancer localization with multiparametric MRI. We show that simple normalization techniques such as z-score are not sufficient for cross-device automated cancer localization. On the other hand, the method we have originally developed based on relative intensity allows us to successfully use a classifier obtained from one device to be applied on a test patient imaged with another device. Proposed method also allows us to employ T2-weighted MR images directly instead of an additional step to normalize T2-weighted images usually performed in an ad hoc manner when T2 maps are not available. To demonstrate the effectiveness of the proposed method, we use a multiparametric MRI data set acquired from 18 biopsy-confirmed cancer patients with two separate scanners: 1) 1.5-T (Excite HD) GE and 2) 1.5-T (Achieva) Philips Healthcare scanners. A comprehensive visual, quantitative, and statistical analysis of the results show that methods we have developed allow us to: 1) perform cross-device automated classification and 2) use T2-weighted images without an ad hoc subject-specific normalization.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Neoplasias da Próstata/patologia , Análise Discriminante , Humanos , Masculino
2.
IEEE Trans Inf Technol Biomed ; 16(6): 1313-23, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22665512

RESUMO

In this paper, we propose a novel and efficient semisupervised technique for automated prostate cancer localization using multiparametric magnetic resonance imaging (MRI). This method can be used in guiding biopsy, surgery, and therapy. We systematically present a new segmentation technique by developing a multiparametric graph based random walker (RW) algorithm with automated seed initialization to perform prostate cancer segmentation using multiparametric MRI. RW algorithm has proved to be accurate and fast in segmentation applications; however it requires a set of (user provided) seed points in order to perform segmentation. In this study, we first developed a novel RW method, which can be used with multiparametric MR images and then devised alternative methods that can determine seed points in an automated manner using discriminative classifiers such as support vector machines (SVM). Proposed RW method with automated seed initialization is able to produce improved segmentation results by assigning more weights to the images with more discriminative power.We applied the proposed method to a multiparametric dataset obtained from biopsy confirmed prostate cancer patients. Proposed method produces a sensitivity/ specificity rate of 0.76 and 0.86, respectively. Both visual, quantitative as well as statistical results are presented to show the significant performance improvements. Fisher sign test is used to demonstrate the statistical significance of our results by achieving p-values less than 0.05. This method outperforms available RW and SVM based methods by achieving a high specificity rate while not reducing sensitivity.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Neoplasias da Próstata/patologia , Máquina de Vetores de Suporte , Humanos , Masculino
3.
Artigo em Inglês | MEDLINE | ID: mdl-23367357

RESUMO

Automated cancer localization with supervised techniques plays an important role in guiding biopsy, surgery and treatment. It is crucial to have an accurate training dataset for supervised techniques. Since different devices with e.g. different protocols and/or field strengths cause different intensity profiles, each device/protocol must have an accompanying training dataset which is very costly to obtain. In this paper, we propose a novel method that has the ability to design classifiers obtained from one imaging protocol and/or MRI device to be used on a dataset from another protocol and/or imaging device. As an example problem we consider prostate cancer localization with multiparametric MRI. We show that simple normalization techniques such as z-score are not sufficient to allow for cross-device automated cancer localization. On the other hand, the methods we have originally developed based on relative intensity allows us to successfully use a classifier obtained from one device to be applied on a test patient imaged with another device.


Assuntos
Automação , Imageamento por Ressonância Magnética/métodos , Neoplasias da Próstata/diagnóstico , Biópsia , Análise Discriminante , Humanos , Masculino
4.
IEEE Trans Image Process ; 19(9): 2444-55, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20716496

RESUMO

Prostate cancer is a leading cause of cancer death for men in the United States. Fortunately, the survival rate for early diagnosed patients is relatively high. Therefore, in vivo imaging plays an important role for the detection and treatment of the disease. Accurate prostate cancer localization with noninvasive imaging can be used to guide biopsy, radiotherapy, and surgery as well as to monitor disease progression. Magnetic resonance imaging (MRI) performed with an endorectal coil provides higher prostate cancer localization accuracy, when compared to transrectal ultrasound (TRUS). However, in general, a single type of MRI is not sufficient for reliable tumor localization. As an alternative, multispectral MRI, i.e., the use of multiple MRI-derived datasets, has emerged as a promising noninvasive imaging technique for the localization of prostate cancer; however almost all studies are with human readers. There is a significant inter and intraobserver variability for human readers, and it is substantially difficult for humans to analyze the large dataset of multispectral MRI. To solve these problems, this study presents an automated localization method using cost-sensitive support vector machines (SVMs) and shows that this method results in improved localization accuracy than classical SVM. Additionally, we develop a new segmentation method by combining conditional random fields (CRF) with a cost-sensitive framework and show that our method further improves cost-sensitive SVM results by incorporating spatial information. We test SVM, cost-sensitive SVM, and the proposed cost-sensitive CRF on multispectral MRI datasets acquired from 21 biopsy-confirmed cancer patients. Our results show that multispectral MRI helps to increase the accuracy of prostate cancer localization when compared to single MR images; and that using advanced methods such as cost-sensitive SVM as well as the proposed cost-sensitive CRF can boost the performance significantly when compared to SVM.


Assuntos
Algoritmos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/patologia , Área Sob a Curva , Inteligência Artificial , Humanos , Masculino , Cadeias de Markov , Curva ROC
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...