Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 27(6): 8858-8870, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-31052697

RESUMO

We present a novel long-range surface plasmon polariton (LRSPP) device consisting of a suspended dielectric matrix in which an electrically active, millimeter-long metallic waveguide is embedded. We show that, by opening an air gap under the lower cladding, the influence of the substrate is suppressed and the symmetry of the thermo-optical distribution around the LRSPP waveguide is preserved over extended ranges of applied electrical current with minimal optical losses. Experimental results show that, compared to a standard nonsuspended structure, our device allows either the induction of a phase change that is three times larger, for a fixed electrical power, or, equivalently, a scaling down of the device to one-tenth of its original length, for a fixed phase change.

2.
Opt Lett ; 41(22): 5198-5201, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27842092

RESUMO

We study numerically the formation of cascading solitons when femtosecond optical pulses are launched into a fiber amplifier with less energy than required to form a soliton of equal duration. As the pulse is amplified, cascaded fundamental solitons are created at different distances, without soliton fission, as each fundamental soliton moves outside the gain bandwidth through the Raman-induced spectral shifts. As a result, each input pulse creates multiple, temporally separated, ultrashort pulses of different wavelengths at the amplifier output. The number of pulses depends not only on the total gain of the amplifier but also on the width of the input pulse.

3.
Opt Express ; 22(19): 23686-93, 2014 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-25321835

RESUMO

We present a numerical strategy to design fiber based dual pulse light sources exhibiting two predefined spectral peaks in the anomalous group velocity dispersion regime. The frequency conversion is based on the soliton fission and soliton self-frequency shift occurring during supercontinuum generation. The optimization process is carried out by a genetic algorithm that provides the optimum input pulse parameters: wavelength, temporal width and peak power. This algorithm is implemented in a Grid platform in order to take advantage of distributed computing. These results are useful for optical coherence tomography applications where bell-shaped pulses located in the second near-infrared window are needed.


Assuntos
Algoritmos , Simulação por Computador , Tecnologia de Fibra Óptica/instrumentação , Luz , Fótons , Espalhamento de Radiação , Desenho Assistido por Computador , Eletrodos , Desenho de Equipamento
4.
Opt Express ; 22(3): 2451-8, 2014 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-24663536

RESUMO

We propose, by means of numerical simulations, a simple method to design a non-uniform standard single mode fiber to generate spectral broadening in the form of "ad-hoc" chosen peaks from dispersive waves. The controlled multi-peak generation is possible by an on/off switch of Cherenkov radiation, achieved by tailoring the fiber dispersion when decreasing the cladding diameter by segments. The interplay between the fiber dispersion and the soliton self-frequency shift results in discrete peaks of efficiently emitted Cherenkov radiation from low order solitons, despite the small amount of energy contained in a pulse. These spectra are useful for applications that demand low power bell-shaped pulses at specific carrier wavelengths.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...