Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Inorg Biochem ; 234: 111864, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35636013

RESUMO

Eight tetra-arylantimony carboxylates of the general formula Ar4SbOC(O)R with Ar = Ph (a), p-Tol (b), R = C6F5 (1), CH2CF3 (2), CF2Br (3), CF2CF2CF3 (4) have been synthesised and characterised. Two of them (2b, 3b) are structurally novel. All structures were analytically characterised by FT-IR, 1H, 13C NMR spectroscopy. Previously synthesised structures were also analysed by X-ray diffraction and their solid-state structures authenticated. The solid-state structures exhibited a typical trigonal-bipyramidal geometry at the antimony centre, with the carboxylic oxygen and one of the aryl group carbons occupying axial positions with the remaining three aryl groups in the equatorial plane. All complexes were screened for their anti-leishmanial activity and cytotoxicity towards mammalian macrophages. No anti-leishmanial testing on tetra-arylantimony carboxylates have been previously performed. It was observed that the tetra-phenylantimony analogues are far more effective in comparison to the tetra-(p-tolyl)antimony complexes, with IC50 values in the ranges of 2.90-7.75 µM and 64.97-124.71 µM, respectively, for the promastigote assay, and 70.87-76.28 µM, 9.08-10.18 µM for the macrophages. Interestingly, the dose-response curve for tetra-phenylantimony carboxylates is a standard sigmoid curve, while for all tetra-(p-tolyl)antimony complexes it has an unusual inverted U-shape, indicating they are effective only at a low dose. All tetra-phenylantimony carboxylates were assessed for their anti-amastigote activity and showed promising results: 1.00% ± 1.44 (1a), 5,25% ± 1.72 (2a), 20.75% ± 8.46 (3a), 5.75% ± 1.62 (4a) at 10 µM.


Assuntos
Leishmania major , Animais , Antimônio/química , Antimônio/farmacologia , Ácidos Carboxílicos/química , Ácidos Carboxílicos/farmacologia , Mamíferos , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
2.
Sensors (Basel) ; 22(10)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35632057

RESUMO

The article deals with the problems of improving modern human-machine interaction systems. Such systems are called biocybernetic systems. It is shown that a significant increase in their efficiency can be achieved by stabilising their work according to the automation control theory. An analysis of the structural schemes of the systems showed that one of the most significantly influencing factors in these systems is a poor "digitization" of the human condition. "Digitization" here is the identification of a person as a participant in the interaction with a cybernetic or cyber-physical system. The main problem of a biocybernetic system construction is the non-stationarity of such human characteristics as time of the reaction to external disturbances, physical or nervous fatigue, the ability to perform the required amount of work, etc. At the same time, as a rule, there is no objective assessment of this non-stationarity. Under these conditions, ensuring the controllability and efficiency of biocybernetic systems is a very difficult task. It is proposed to solve this problem with the help of electrocardiogram signals: the most accessible and accurate information about a human's current state. Herein, several examples of such solutions and the results of theoretical studies and experiments are discussed.


Assuntos
Fadiga , Sistemas Homem-Máquina , Automação , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...