Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37398293

RESUMO

Replication of genetic material involves the creation of characteristic termini. Determining these termini is important to refine our understanding of the mechanisms involved in maintaining the genomes of cellular organisms and viruses. Here we describe a computational approach combining direct and indirect readouts to detect termini from next-generation short-read sequencing. While a direct inference of termini can come from mapping the most prominent start positions of captured DNA fragments, this approach is insufficient in cases where the DNA termini are not captured, whether for biological or technical reasons. Thus, a complementary (indirect) approach to terminus detection can be applied, taking advantage of the imbalance in coverage between forward and reverse sequence reads near termini. A resulting metric ("strand bias") can be used to detect termini even where termini are naturally blocked from capture or ends are not captured during library preparation (e.g., in tagmentation-based protocols). Applying this analysis to datasets where known DNA termini are present, such as from linear double-stranded viral genomes, yielded distinct strand bias signals corresponding to these termini. To evaluate the potential to analyze a more complex situation, we applied the analysis to examine DNA termini present early after HIV infection in a cell culture model. We observed both the known termini expected based on standard models of HIV reverse transcription (the U5-right-end and U3-left-end termini) as well as a signal corresponding to a previously described additional initiation site for plus-strand synthesis (cPPT [central polypurine tract]). Interestingly, we also detected putative terminus signals at additional sites. The strongest of these are a set that share several characteristics with the previously characterized plus-strand initiation sites (the cPPT and 3' PPT [polypurine tract] sites): (i) an observed spike in directly captured cDNA ends, an indirect terminus signal evident in localized strand bias, (iii) a preference for location on the plus-strand, (iv) an upstream purine-rich motif, and (v) a decrease in terminus signal at late time points after infection. These characteristics are consistent in duplicate samples in two different genotypes (wild type and integrase-lacking HIV). The observation of distinct internal termini associated with multiple purine-rich regions raises a possibility that multiple internal initiations of plus-strand synthesis might contribute to HIV replication.

2.
mSphere ; 5(3)2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32376697

RESUMO

In numerous instances, tracking the biological significance of a nucleic acid sequence can be augmented through the identification of environmental niches in which the sequence of interest is present. Many metagenomic data sets are now available, with deep sequencing of samples from diverse biological niches. While any individual metagenomic data set can be readily queried using web-based tools, meta-searches through all such data sets are less accessible. In this brief communication, we demonstrate such a meta-metagenomic approach, examining close matches to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in all high-throughput sequencing data sets in the NCBI Sequence Read Archive accessible with the "virome" keyword. In addition to the homology to bat coronaviruses observed in descriptions of the SARS-CoV-2 sequence (F. Wu, S. Zhao, B. Yu, Y. M. Chen, et al., Nature 579:265-269, 2020, https://doi.org/10.1038/s41586-020-2008-3; P. Zhou, X. L. Yang, X. G. Wang, B. Hu, et al., Nature 579:270-273, 2020, https://doi.org/10.1038/s41586-020-2012-7), we note a strong homology to numerous sequence reads in metavirome data sets generated from the lungs of deceased pangolins reported by Liu et al. (P. Liu, W. Chen, and J. P. Chen, Viruses 11:979, 2019, https://doi.org/10.3390/v11110979). While analysis of these reads indicates the presence of a similar viral sequence in pangolin lung, the similarity is not sufficient to either confirm or rule out a role for pangolins as an intermediate host in the recent emergence of SARS-CoV-2. In addition to the implications for SARS-CoV-2 emergence, this study illustrates the utility and limitations of meta-metagenomic search tools in effective and rapid characterization of potentially significant nucleic acid sequences.IMPORTANCE Meta-metagenomic searches allow for high-speed, low-cost identification of potentially significant biological niches for sequences of interest.


Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/veterinária , Eutérios/virologia , Pneumopatias/veterinária , Metagenômica/métodos , Animais , Sequência de Bases , Quirópteros/virologia , Infecções por Coronavirus/virologia , Pulmão/virologia , Pneumopatias/virologia , SARS-CoV-2 , Alinhamento de Sequência
3.
Genome Res ; 29(6): 1009-1022, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31123080

RESUMO

Caenorhabditis elegans was the first multicellular eukaryotic genome sequenced to apparent completion. Although this assembly employed a standard C. elegans strain (N2), it used sequence data from several laboratories, with DNA propagated in bacteria and yeast. Thus, the N2 assembly has many differences from any C. elegans available today. To provide a more accurate C. elegans genome, we performed long-read assembly of VC2010, a modern strain derived from N2. Our VC2010 assembly has 99.98% identity to N2 but with an additional 1.8 Mb including tandem repeat expansions and genome duplications. For 116 structural discrepancies between N2 and VC2010, 97 structures matching VC2010 (84%) were also found in two outgroup strains, implying deficiencies in N2. Over 98% of N2 genes encoded unchanged products in VC2010; moreover, we predicted ≥53 new genes in VC2010. The recompleted genome of C. elegans should be a valuable resource for genetics, genomics, and systems biology.


Assuntos
Caenorhabditis elegans/genética , Genoma Helmíntico , Genômica , Animais , Proteínas de Caenorhabditis elegans/genética , Biologia Computacional/métodos , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Reprodutibilidade dos Testes
4.
Dev Cell ; 48(6): 827-839.e9, 2019 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-30799227

RESUMO

The recent work of Besseling and Bringmann (2016) identified a molecular intervention for C. elegans in which premature segregation of maternal and paternal chromosomes in the fertilized oocyte can produce viable animals exhibiting a non-Mendelian inheritance pattern. Overexpression in embryos of a single protein regulating chromosome segregation (GPR-1) provides a germline derived clonally from a single parental gamete. We present a collection of strains and cytological assays to consistently generate and track non-Mendelian inheritance. These tools allow reproducible and high-frequency (>80%) production of non-Mendelian inheritance, the facile and simultaneous homozygosis for all nuclear chromosomes in a single generation, the precise exchange of nuclear and mitochondrial genomes between strains, and the assessments of non-canonical mitosis events. We show the utility of these strains by demonstrating a rapid assessment of cell lineage requirements (AB versus P1) for a set of genes (lin-2, lin-3, lin-12, and lin-31) with roles in C. elegans vulval development.


Assuntos
Caenorhabditis elegans/genética , Células Germinativas/metabolismo , Padrões de Herança/genética , Animais , Biomarcadores/metabolismo , Caenorhabditis elegans/embriologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cromossomos/genética , Cruzamentos Genéticos , Feminino , Fluorescência , Masculino , Microtúbulos/metabolismo , Mosaicismo , Mutação/genética , Faringe/metabolismo , Fenótipo , Vulva/embriologia , Vulva/metabolismo , Zigoto/metabolismo
5.
Genetics ; 210(1): 155-170, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29986907

RESUMO

Nutrient availability, growth rate, and cell size are closely linked. For example, in budding yeast, the rate of cell growth is proportional to nutrient availability, cell size is proportional to growth rate, and growth rate is proportional to cell size. Thus, cells grow slowly in poor nutrients and are nearly half the size of cells growing in rich nutrients. Moreover, large cells grow faster than small cells. A signaling network that surrounds TOR kinase complex 2 (TORC2) plays an important role in enforcing these proportional relationships. Cells that lack components of the TORC2 network fail to modulate their growth rate or size in response to changes in nutrient availability. Here, we show that budding yeast homologs of the Lkb1 tumor suppressor kinase are required for normal modulation of TORC2 signaling in response to changes in carbon source. Lkb1 kinases activate Snf1/AMPK to initiate transcription of genes required for utilization of poor carbon sources. However, Lkb1 influences TORC2 signaling via a novel pathway that is independent of Snf1/AMPK. Of the three Lkb1 homologs in budding yeast, Elm1 plays the most important role in modulating TORC2. Elm1 activates a pair of related kinases called Gin4 and Hsl1. Previous work found that loss of Gin4 and Hsl1 causes cells to undergo unrestrained growth during a prolonged mitotic arrest, which suggests that they play a role in linking cell cycle progression to cell growth. We found that Gin4 and Hsl1 also control the TORC2 network. In addition, Gin4 and Hsl1 are themselves influenced by signals from the TORC2 network, consistent with previous work showing that the TORC2 network constitutes a feedback loop. Together, the data suggest a model in which the TORC2 network sets growth rate in response to carbon source, while also relaying signals via Gin4 and Hsl1 that set the critical amount of growth required for cell cycle progression. This kind of close linkage between control of cell growth and size would suggest a simple mechanistic explanation for the proportional relationship between cell size and growth rate.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Caenorhabditis elegans/genética , Ciclo Celular , Proteínas de Ciclo Celular/genética , Crescimento Celular , Proliferação de Células/genética , Quinases Ciclina-Dependentes/metabolismo , Fosforilação , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Transdução de Sinais/genética
6.
RNA ; 21(11): 1980-92, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26385508

RESUMO

The founding heterochronic microRNAs, lin-4 and let-7, together with their validated targets and well-characterized phenotypes in C. elegans, offer an opportunity to test functionality of microRNAs in a developmental context. In this study, we defined sequence requirements at the microRNA level for these two microRNAs, evaluating lin-4 and let-7 mutant microRNAs for their ability to support temporal development under conditions where the wild-type lin-4 and let-7 gene products are absent. For lin-4, we found a strong requirement for seed sequences, with function drastically affected by several central mutations in the seed sequence, while rescue was retained by a set of mutations peripheral to the seed. let-7 rescuing activity was retained to a surprising degree by a variety of central seed mutations, while several non-seed mutant effects support potential noncanonical contributions to let-7 function. Taken together, this work illustrates both the functional partnership between seed and non-seed sequences in mediating C. elegans temporal development and a diversity among microRNA effectors in the contributions of seed and non-seed regions to activity.


Assuntos
Caenorhabditis elegans/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , MicroRNAs/genética , Animais , Proteínas de Caenorhabditis elegans/genética , Mutação/genética , Fenótipo
7.
Nucleic Acids Res ; 42(22): 13778-87, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25399416

RESUMO

To study target sequence specificity, selectivity, and reaction kinetics of Streptococcus pyogenes Cas9 activity, we challenged libraries of random variant targets with purified Cas9::guide RNA complexes in vitro. Cleavage kinetics were nonlinear, with a burst of initial activity followed by slower sustained cleavage. Consistent with other recent analyses of Cas9 sequence specificity, we observe considerable (albeit incomplete) impairment of cleavage for targets mutated in the PAM sequence or in 'seed' sequences matching the proximal 8 bp of the guide. A second target region requiring close homology was located at the other end of the guide::target duplex (positions 13-18 relative to the PAM). Sequences flanking the guide+PAM region had measurable (albeit modest) effects on cleavage. In addition, the first-base Guanine constraint commonly imposed by gRNA expression systems has little effect on overall cleavage efficiency. Taken together, these studies provide an in vitro understanding of the complexities of Cas9-gRNA interaction and cleavage beyond the general paradigm of site determination based on the 'seed' sequence and PAM.


Assuntos
Proteínas Associadas a CRISPR/metabolismo , Clivagem do DNA , Endodesoxirribonucleases/metabolismo , DNA/química , Cinética , RNA/química , Homologia de Sequência do Ácido Nucleico , Streptococcus pyogenes/enzimologia
8.
Genetics ; 198(3): 837-46, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25161212

RESUMO

Facilitated by recent advances using CRISPR/Cas9, genome editing technologies now permit custom genetic modifications in a wide variety of organisms. Ideally, modified animals could be both efficiently made and easily identified with minimal initial screening and without introducing exogenous sequence at the locus of interest or marker mutations elsewhere. To this end, we describe a coconversion strategy, using CRISPR/Cas9 in which screening for a dominant phenotypic oligonucleotide-templated conversion event at one locus can be used to enrich for custom modifications at another unlinked locus. After the desired mutation is identified among the F1 progeny heterozygous for the dominant marker mutation, F2 animals that have lost the marker mutation are picked to obtain the desired mutation in an unmarked genetic background. We have developed such a coconversion strategy for Caenorhabditis elegans, using a number of dominant phenotypic markers. Examining the coconversion at a second (unselected) locus of interest in the marked F1 animals, we observed that 14-84% of screened animals showed homologous recombination. By reconstituting the unmarked background through segregation of the dominant marker mutation at each step, we show that custom modification events can be carried out recursively, enabling multiple mutant animals to be made. While our initial choice of a coconversion marker [rol-6(su1006)] was readily applicable in a single round of coconversion, the genetic properties of this locus were not optimal in that CRISPR-mediated deletion mutations at the unselected rol-6 locus can render a fraction of coconverted strains recalcitrant to further rounds of similar mutagenesis. An optimal marker in this sense would provide phenotypic distinctions between the desired mutant/+ class and alternative +/+, mutant/null, null/null, and null/+ genotypes. Reviewing dominant alleles from classical C. elegans genetics, we identified one mutation in dpy-10 and one mutation in sqt-1 that meet these criteria and demonstrate that these too can be used as effective conversion markers. Coconversion was observed using a variety of donor molecules at the second (unselected) locus, including oligonucleotides, PCR products, and plasmids. We note that the coconversion approach described here could be applied in any of the variety of systems where suitable coconversion markers can be identified from previous intensive genetic analyses of gain-of-function alleles.


Assuntos
Sistemas CRISPR-Cas/genética , Caenorhabditis elegans/genética , Moldes Genéticos , Alelos , Animais , Sequência de Bases , Cromossomos/genética , Cruzamentos Genéticos , Reparo do DNA por Junção de Extremidades/genética , Feminino , Conversão Gênica , Loci Gênicos/genética , Marcadores Genéticos , Proteínas de Fluorescência Verde/metabolismo , Homozigoto , Masculino , Dados de Sequência Molecular , Oligonucleotídeos/genética , Oócitos/metabolismo , Fenótipo , Mutação Puntual/genética , Espermatozoides/metabolismo
9.
Cell Host Microbe ; 13(6): 691-700, 2013 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-23768493

RESUMO

Dengue is the most prevalent mosquito-borne viral disease in humans, and the lack of early prognostics, vaccines, and therapeutics contributes to immense disease burden. To identify patterns that could be used for sequence-based monitoring of the antibody response to dengue, we examined antibody heavy-chain gene rearrangements in longitudinal peripheral blood samples from 60 dengue patients. Comparing signatures between acute dengue, postrecovery, and healthy samples, we found increased expansion of B cell clones in acute dengue patients, with higher overall clonality in secondary infection. Additionally, we observed consistent antibody sequence features in acute dengue in the highly variable major antigen-binding determinant, complementarity-determining region 3 (CDR3), with specific CDR3 sequences highly enriched in acute samples compared to postrecovery, healthy, or non-dengue samples. Dengue thus provides a striking example of a human viral infection where convergent immune signatures can be identified in multiple individuals. Such signatures could facilitate surveillance of immunological memory in communities.


Assuntos
Anticorpos Antivirais/sangue , Vírus da Dengue/imunologia , Dengue/imunologia , Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , Regiões Determinantes de Complementaridade/imunologia , Humanos , Memória Imunológica
10.
Genome Res ; 22(12): 2418-26, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22855835

RESUMO

miRNAs are post-transcriptional regulators of gene activity that reduce protein accumulation from target mRNAs. Elucidating precise molecular effects that animal miRNAs have on target transcripts has proven complex, with varied evidence indicating that miRNA regulation may produce different molecular outcomes in different species, systems, and/or physiological conditions. Here we use high-throughput ribosome profiling to analyze detailed translational parameters for five well-studied targets of miRNAs that regulate C. elegans developmental timing. For two targets of the miRNA lin-4 (lin-14 and lin-28), functional down-regulation was associated with decreases in both overall mRNA abundance and ribosome loading; however, these changes were of substantially smaller magnitude than corresponding changes observed in protein abundance. For three functional targets of the let-7 miRNA family for which down-regulation is critical in temporal progression of the animal (daf-12, hbl-1, and lin-41), we observed only modest changes in mRNA abundance and ribosome loading. lin-41 provides a striking example in that populations of ribosome-protected fragments from this gene remained essentially unchanged during the L3-L4 time interval when lin-41 activity is substantially down-regulated by let-7. Spectra of ribosomal positions were also examined for the five lin-4 and let-7 target mRNAs as a function of developmental time, with no indication of miRNA-induced ribosomal drop-off or significant pauses in translation. These data are consistent with models in which physiological regulation by this set of C. elegans miRNAs derives from combinatorial effects including suppressed recruitment/activation of translational machinery, compromised stability of target messages, and post- or peri-translational effects on lifetimes of polypeptide products.


Assuntos
Caenorhabditis elegans/genética , Genes de Helmintos , MicroRNAs/genética , RNA Mensageiro/genética , Ribossomos/metabolismo , Alelos , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , DNA de Helmintos/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Heterozigoto , Immunoblotting , MicroRNAs/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , RNA Mensageiro/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Ribossomos/genética , Análise de Sequência de RNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional
11.
PLoS Genet ; 5(11): e1000727, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19911052

RESUMO

The key molecular event that marks entry into the cell cycle is transcription of G1 cyclins, which bind and activate cyclin-dependent kinases. In yeast cells, initiation of G1 cyclin transcription is linked to achievement of a critical cell size, which contributes to cell-size homeostasis. The critical cell size is modulated by nutrients, such that cells growing in poor nutrients are smaller than cells growing in rich nutrients. Nutrient modulation of cell size does not work through known critical regulators of G1 cyclin transcription and is therefore thought to work through a distinct pathway. Here, we report that Rts1, a highly conserved regulatory subunit of protein phosphatase 2A (PP2A), is required for normal control of G1 cyclin transcription. Loss of Rts1 caused delayed initiation of bud growth and delayed and reduced accumulation of G1 cyclins. Expression of the G1 cyclin CLN2 from an inducible promoter rescued the delayed bud growth in rts1Delta cells, indicating that Rts1 acts at the level of transcription. Moreover, loss of Rts1 caused altered regulation of Swi6, a key component of the SBF transcription factor that controls G1 cyclin transcription. Epistasis analysis revealed that Rts1 does not work solely through several known critical upstream regulators of G1 cyclin transcription. Cells lacking Rts1 failed to undergo nutrient modulation of cell size. Together, these observations demonstrate that Rts1 is a key player in pathways that link nutrient availability, cell size, and G1 cyclin transcription. Since Rts1 is highly conserved, it may function in similar pathways in vertebrates.


Assuntos
Biologia Computacional/métodos , Ciclina G1/genética , Proteína Fosfatase 2/metabolismo , Subunidades Proteicas/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fase G1 , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína Fosfatase 2/genética , Subunidades Proteicas/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica , Leveduras/genética , Leveduras/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...