Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Public Health ; 11: 1184861, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37497024

RESUMO

This study proposes an approach to the external evaluation of medical education programs' quality based on a combination of indicators, including international rankings, external stakeholders' input, and independent agencies' assessments. We modify the success equation with a detailed consideration of the skill component and its decomposition into internal and external quality assurance elements along with authority. We carried out a bibliometric analysis regarding the problem of medical education quality assessment in the context of achieving sustainable development goals. We described the calculation model of external quality assessment indicators through the algorithms of independent education quality assurance agencies' activity and rating indicators shown in the modified Mauboussin's equation. The model considers the economic component (the consequence of achievement) of skill, which is expressed in raising funds from external sources to implement educational and scientific activities. The proposed algorithm for assessing the educational program quality can be applied to benchmark educational program components, complete educational programs within the subject area, and the educational institution for different areas. We propose a "financial" model for educational program quality based on the analysis results. The model makes it possible to determine the need for additional focused funding of the educational program based on the individual analysis of the external evaluation criteria of the achievement level. This study analyzes the accreditation results of more than 110 educational programs in 2020 and 8 months of 2021 within the direction 22 "Medicine" (according to the national classification of fields of knowledge) (state and private Ukrainian medical universities).


Assuntos
Educação Médica , Avaliação Educacional
2.
Polymers (Basel) ; 15(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37242934

RESUMO

This paper is oriented toward the specific testing of polymer composites and textile PA66 cords used as reinforcement for composites. The aim of the research is to validate the proposed new testing methods for low-cyclic testing of polymer composites and PA66 cords for the characterization of material parameters useful as input data for computational tire simulations. Part of the research is the design of experimental methods for polymer composites and test parameters such as load rate, preload, and other parameters such as strain for the start and stop of cycle steps. The DIN 53835-13 standard is used for the conditions of textile cord during the first five cycles. A cyclic load is carried out at two temperatures of 20 °C and 120 °C. The testing method includes a hold step for 60 s between each loop. The video-extensometer technique is used for testing. The paper evaluated the effect of temperatures on the material properties of PA66 cords. The true stress-strain (elongation) dependences between points for the video-extensometer of the fifth cycle of every cycle loop are the data results from composite tests. The forcestrain dependences between points for the video-extensometer are the data results from tests of the PA66 cord. These dependencies can be used as input material data of textile cords in the computational simulation of tire casings using a custom material model definition. The fourth cycle in every cycle loop of polymer composites can be considered a stable cycle because the change in the maximum true stress between the fourth and fifth cycles is 1.6%. Other results of this research include a relationship between stress and the number of cycle loops as the second-degree polynomial curve for polymer composites and a simple relationship to describe the value of the force at each end of the cycles for a textile cord.

3.
Polymers (Basel) ; 14(23)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36501680

RESUMO

Composite materials have a wide range of functional properties, which is ensured by using various technological methods of obtaining both the matrix or fillers and the composition as a whole. A special place belongs to the composition formation technology, which ensures the necessary structure and properties of the composite. In this work, a computer simulation was carried out to identify the main dependencies of the behavior of composite materials in the process of the main technological operations of their production: pressing and subsequent sintering. A polymer matrix randomly reinforced with two types of fillers: spherical and short cylindrical inclusions, was used to construct the finite element models of the structure of composites. The ANSYS Workbench package was used as a calculation simulation platform. The true stress-strain curves for tension, Poisson's ratios, and ultimate stresses for composite materials were obtained using the finite element method based on the micromechanical approach at the first stage. These values were calculated based on the stretching diagrams of the matrix and fillers and the condition of the ideality of their joint operation. At the second stage, the processes of mechanical pressing of composite materials were modelled based on their elastic-plastic characteristics from the first stage. The result is an assessment of the accumulation of residual strains at the stage before sintering. The degree of increase in total strain capability of composite materials after sintering was shown.

4.
Polymers (Basel) ; 14(9)2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35567052

RESUMO

This article is devoted to modeling, researching and optimizing the main properties of an environmentally clean polymer composition based on oligofurfuryloxysiloxanes (OFOS), which can be used to produce casting molds and cores in the production of castings from ferrous and nonferrous metals. Polymer compositions were examined for strength, survivability, gas permeability, moisture, crumbliness, fire resistance, knockout, and stickability. It has been established that the increase in the strength of the polymer composition over time obeys an exponential law. Mathematical equations were derived for all the exponential curves. The indications of compressive strength of the polymer composition with OFOS with all the acid catalysts used were, on average, as follows: after 1 h-1.3-1.54 MPa; after 3 h-2.5-2.9 MPa; after 24 h-4.9-6.1 MPa, which meets the requirements for casting molds before pouring with metal. The use of polymer compositions with OFOS ensures environmental safety of the technological process, due to the lack of emission of toxic substances, both in the "cold" stage of the process and during casting with molten metal, cooling, knocking out, and disposal of polymer compositions. This makes it possible to save energy resources, and thereby reduce the total cost of the entire technological process and castings.

5.
Polymers (Basel) ; 14(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35631969

RESUMO

The technical and economic efficiency of new PCMs depends on the ability to predict their performance. The problem of predicting the properties of PCMs can be solved by computer simulation by the finite element method. In this work, an experimental determination of the physical and mechanical properties of PTFE PCMs depending on the concentration of fibrous and dispersed filler was carried out. A finite element model in ANSYS APDL was built to simulate the strength and load-bearing capacity of the material with the analysis of damage accumulation. Verification of the developed computer model to predict the mechanical properties of composite materials was performed by comparing the results obtained during field and model experiments. It was found that the finite element model predicts the strength of chaotically reinforced spherical inclusions of composite materials. This is due to the smoothness of the filler surfaces and the lack of filler dissection in the model. Instead, the prediction of the strength of a finite element model of chaotically reinforced cylindrical inclusions of composite materials requires additional analysis. The matrix and the fibrous filler obviously have stress concentrators and are both subject to the difficulties of creating a reliable structural model.

6.
Materials (Basel) ; 14(7)2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33806165

RESUMO

High-strength screws represent one of the main joining or fastening components which are commonly used in the process of installation of frame constructions for information boards or signposts, relating to the traffic roads. The control of the production process may not always be a sufficient method for ensuring road safety. The backward investigation and control of the screw material processing seems to be the one of the most important procedures when there is the occurrence of any failure during the operation of the screw. This paper is mainly focused on the analysis of the failure of the high-strength screw of 10.9 grade with M diameter of 27 × 3 and a shank length of 64 mm. The mentioned and investigated screw was used as a fastener in a highway frame construction. In the paper, there is mainly the analysis of the material for a broken screw in terms of the material micropurity, the material microstructure, the surface treatment as well as chemical composition. The evaluation was based on investigation by optical microscopy, scanning electron microscopy and energy dispersive spectroscopy. Important knowledge and results were also obtained due to information on micromorphology and material contrast of the fracture surface resulting from fractographic analysis, using the method of scanning electron microscopy. In the case of the production of the high-strength screws, the tempering stands for the decisive or crucial process of heat treatment because the given process can ensure a decrease in hardness, while the required ductile properties of the material are kept and this is also reflected in the increase of strength and micromorphology of the fracture surface. From the aspect of micropurity, inclusions of critical size or distribution were not identified in the material, referring to Czech standard CSN ISO 4967 (420471). The microstructure corresponds to tempered martensite, but the fracture surface of the broken screw was based on an intercrystalline micromechanism, which is undesirable for the given type of component. Combined with the measurement of the HV1 (Vickers hardness at a load of 1 kg) from the edge to the central area of the screw, the analysis revealed the significant drawbacks in the heat treatment of the high-strength screw.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...