Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 593(7860): 548-552, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33882562

RESUMO

Global peatlands store more carbon than is naturally present in the atmosphere1,2. However, many peatlands are under pressure from drainage-based agriculture, plantation development and fire, with the equivalent of around 3 per cent of all anthropogenic greenhouse gases emitted from drained peatland3-5. Efforts to curb such emissions are intensifying through the conservation of undrained peatlands and re-wetting of drained systems6. Here we report eddy covariance data for carbon dioxide from 16 locations and static chamber measurements for methane from 41 locations in the UK and Ireland. We combine these with published data from sites across all major peatland biomes. We find that the mean annual effective water table depth (WTDe; that is, the average depth of the aerated peat layer) overrides all other ecosystem- and management-related controls on greenhouse gas fluxes. We estimate that every 10 centimetres of reduction in WTDe could reduce the net warming impact of CO2 and CH4 emissions (100-year global warming potentials) by the equivalent of at least 3 tonnes of CO2 per hectare per year, until WTDe is less than 30 centimetres. Raising water levels further would continue to have a net cooling effect until WTDe is within 10 centimetres of the surface. Our results suggest that greenhouse gas emissions from peatlands drained for agriculture could be greatly reduced without necessarily halting their productive use. Halving WTDe in all drained agricultural peatlands, for example, could reduce emissions by the equivalent of over 1 per cent of global anthropogenic emissions.

2.
Sci Total Environ ; 761: 143312, 2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33267996

RESUMO

Peatland areas provide a range of ecosystem services, including biodiversity, carbon storage, clean water, and flood mitigation, but many areas of peatland in the UK have been degraded through human land use including drainage. Here, we explore whether remote sensing can be used to monitor peatland resilience to drought. We take resilience to mean the rate at which a system recovers from perturbation; here measured literally as a recovery timescale of a soil surface moisture proxy from drought lowering. Our objectives were (1) to assess the reliability of Sentinel-1 Synthetic Aperture Radar (SAR) backscatter as a proxy for water table depth (WTD); (2) to develop a method using SAR to estimate below-ground (hydrological) resilience of peatlands; and (3) to apply the developed method to different sites and consider the links between resilience and land management. Our inferences of WTD from Sentinel-1 SAR data gave results with an average Pearson's correlation of 0.77 when compared to measured WTD values. The 2018 summer drought was used to assess resilience across three different UK peatland areas (Dartmoor, the Peak District, and the Flow Country) by considering the timescale of the soil moisture proxy recovery. Results show clear areas of lower resilience within all three study sites, which often correspond to areas of high drainage and may be particularly vulnerable to increasing drought severity/events under climate change. This method is applicable to monitoring peatland resilience elsewhere over larger scales, and could be used to target restoration work towards the most vulnerable areas.

3.
J Environ Manage ; 246: 594-604, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31202827

RESUMO

Peatlands are an important terrestrial carbon store, but disturbance has resulted in the degradation of many peatland ecosystems and caused them to act as a net carbon source. Restoration work is being undertaken but monitoring the success of these schemes can be difficult and costly using traditional field-based methods. A landscape-scale alternative is to use satellite data to assess the condition of peatlands and to estimate gaseous carbon fluxes. In this study we used Moderate Resolution Imaging Spectroradiometer (MODIS) products to model Gross Primary Productivity (GPP) over peatland sites at various stages of restoration. We found that the MOD17A2H GPP product overestimates GPP modelled from data collected by eddy covariance towers situated at two ex-forestry sites undergoing restoration towards blanket bog at the Forsinard Flows RSPB reserve, Scotland, UK (one full year of data), and a near-natural Atlantic blanket bog site in Glencar, Ireland (ten-year data series). We calibrated a Temperature and Greenness (TG) model for the Forsinard sites and found it to be more accurate than the MODIS GPP product at local scale. We also found that inclusion of a wetness factor using the Normalised Difference Water Index (NDWI) improved inter-annual accuracy of the model. This TGWa (annual Temperature, Greenness and Wetness) model was then applied to six control sites comprising near-natural bog across the reserve, and to six sites on which restoration began between 1998 and 2006. GPP from 2005 to 2016 was estimated for each site using the model. The resulting modelled trends are positive at all six restored sites, increasing by approximately 5.5 g C/m2/yr every year since restoration began in the Forsinard Flows reserve. The results suggest that peatland sites undergoing restoration at Forsinard Flows reach the carbon assimilation potential of near-natural bog sites between 5 and 10 years after restoration was begun.


Assuntos
Ecossistema , Fotossíntese , Ciclo do Carbono , Irlanda , Escócia
4.
Sci Total Environ ; 615: 857-874, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29017128

RESUMO

Peatlands store large amounts of terrestrial carbon and any changes to their carbon balance could cause large changes in the greenhouse gas (GHG) balance of the Earth's atmosphere. There is still much uncertainty about how the GHG dynamics of peatlands are affected by climate and land use change. Current field-based methods of estimating annual carbon exchange between peatlands and the atmosphere include flux chambers and eddy covariance towers. However, remote sensing has several advantages over these traditional approaches in terms of cost, spatial coverage and accessibility to remote locations. In this paper, we outline the basic principles of using remote sensing to estimate ecosystem carbon fluxes and explain the range of satellite data available for such estimations, considering the indices and models developed to make use of the data. Past studies, which have used remote sensing data in comparison with ground-based calculations of carbon fluxes over Northern peatland landscapes, are discussed, as well as the challenges of working with remote sensing on peatlands. Finally, we suggest areas in need of future work on this topic. We conclude that the application of remote sensing to models of carbon fluxes is a viable research method over Northern peatlands but further work is needed to develop more comprehensive carbon cycle models and to improve the long-term reliability of models, particularly on peatland sites undergoing restoration.

5.
J Microbiol Methods ; 85(3): 190-8, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21414363

RESUMO

We investigated a range of microbiological community assays performed on scrapes of biofilms formed on artificial diffusing substrates deployed in 8 streams in eastern Scotland, with a view to using them to characterize ecological response to stream water quality. The assays considered were: Multiplex Terminal Restriction Fragment Length Polymorphism or M-TRFLP (a molecular method), Phospholipid Fatty Acid or PLFA analysis (a biochemical method) and MICRORESP™ (a physiological method) alongside TDI, diatom species, and chlorophyll a content. Four of the streams were classified as of excellent status (3-6µg/L Soluble Reactive Phosphorus (SRP)) with respect to soluble P content under the EU Water Framework Directive and four were of borderline good/moderate or moderate status (43-577µg/L SRP). At each site, 3 replicates of 3 solute diffusion treatments were deployed in a Latin square design. Solute diffusion treatments were: KCl (as a control solute), N and P (to investigate the effect of nutrient enrichment), or the herbicide isoproturon (as a "high impact" control, which aimed to affect biofilm growth in a way detectable by all assays). Biofilms were sampled after 4weeks deployment in a low flow period of early summer 2006. The chlorophyll a content of biofilms after 4weeks was 2.0±0.29mg/m(2) (mean±se). Dry matter content was 16.0±13.1g/m(2). The M-TRFLP was successfully used for generating community profiles of cyanobacteria, algae and bacteria and was much faster than diatom identification. The PFLA and TDI were successful after an increase in the sample size, due to low counts. The MICRORESP(™) assays were often below or near detection limit. We estimated the per-sample times for the successful assays as follows: M-TRFLP: 20min, PLFA 40min, TDI 90min. Using MANOVA on the first 5 principal co-ordinates, all the assays except MICRORESP(™) showed significant differences between sites, but none of the assays showed a significant effect of either initial stream trophic status (as classified by the EU Water Framework Directive using chemical standards for soluble P), or of the diffusing solute treatment. Multiple Procrustes analysis on the ordination results showed that the diatom and M-TRFLP data sets hold distinct, though as yet unexplored, information about the ecological factors affecting stream biofilms. The diatom data were subjected to principal components analysis, to identify which taxa were more strongly influenced by site variables, trophic status or treatment effects. These were Acnanthes lanceolata, A. minutissimma, Nitzchia spp., Coccineis spp. and Navicula spp. Further experimentation and data analysis on a larger number of sites, to identify specific M-TRFLP bands that could be used as indicators linked to specific taxa, are desirable. Results highlight the need for a multifactorial approach to understanding controls on stream ecology.


Assuntos
Biodiversidade , Biofilmes/crescimento & desenvolvimento , Ecossistema , Metagenoma , Rios/microbiologia , Técnicas de Química Analítica , Ecologia/métodos , Metagenômica/métodos , Rios/química , Escócia
6.
Appl Environ Microbiol ; 64(8): 2894-8, 1998 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-9687447

RESUMO

Recent studies have shown that archaea which were always thought to live under strict anoxic or extreme environmental conditions are also present in cold, oxygenated seawater, soils, the digestive tract of a holothurian deep-sea-deposit feeder, and a marine sponge. In this study, we show, by using PCR-mediated screening in other marine eukaryotes, that marine archaea are also present in the digestive tracts of flounder and grey mullet, two fish species common in the North Sea, in fecal samples of flounder, and in suspended particulate matter of the North Sea water column. No marine archaea could be detected in the digestive tracts of mussels or the fecal pellets of a copepod species. The archaeal 16S ribosomal DNA clone libraries of feces of flounder and the contents of the digestive tracts of grey mullet and flounder were dominated by group II marine archaea. The marine archaeal clones derived from flounder and grey mullet digestive tracts and feces formed a distinct cluster within the group II marine archaea, with 76.7 to 89. 8% similarity to previously described group II clones. Fingerprinting of the archaeal community of flounder digestive tract contents and feces by terminal restriction fragment length polymorphism of archaeal 16S rRNA genes after restriction with HhaI showed a dominant fragment at 249 bp, which is likely to be derived from group II marine archaea. Clones of marine archaea that were closely related to the fish-associated marine archaea clones were obtained from suspended particulate matter of the water column at two stations in the North Sea. Terminal restriction fragment length polymorphism fingerprinting of the archaeal community present in suspended particulate matter showed the same fragment pattern as was found for the archaeal community of the flounder digestive tract contents and feces. These data demonstrate that marine archaea are present in the digestive tracts and feces of very common marine fish. It is possible that the marine archaea associated with the digestive tracts of marine fish are liberated into the water column through the feces and subsequently contribute to the marine archaeal community of suspended particulate matter.


Assuntos
Archaea/isolamento & purificação , Sistema Digestório/microbiologia , Linguado/microbiologia , Perciformes/microbiologia , Água do Mar/microbiologia , Animais , Archaea/classificação , Archaea/genética , Sequência de Bases , Impressões Digitais de DNA , DNA Arqueal/análise , DNA Ribossômico/análise , Fezes/microbiologia , Dados de Sequência Molecular , Países Baixos , Mar do Norte , Hibridização de Ácido Nucleico , Filogenia , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , RNA Ribossômico 16S/genética , Microbiologia da Água
7.
FEBS Lett ; 408(2): 147-50, 1997 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-9187356

RESUMO

The presence of hydrogenosomes in phylogenetically distinct anaerobic eukaryotes implies that they have been acquired independently, and previously reported differences in ultrastructure among taxa have suggested that some hydrogenosomes have different origins. Of particular interest are reports that Neocallimastix frontalis hydrogenosomes resemble microbodies in possessing a single membrane, in contrast to those in ciliates and trichomonads which have two and thus resemble mitochondria. In this investigation we have clearly demonstrated that N. frontalis hydrogenosomes possess two, rather than one, closely apposed membranes and in some preparations cristae-like structures were observed. These observations have led us to reject the microbody hypothesis and provide some indirect support for a possible mitochondrion origin as proposed for other hydrogenosomes. N. frontalis hydrogenosomes were shown to lack an associated genome as previously demonstrated for trichomonad hydrogenosomes. This might be explained by assuming that a mitochondrial genome encoding proteins for aerobic function is no longer necessary for either organelle.


Assuntos
Fungos/ultraestrutura , Hidrogênio/metabolismo , Organelas/ultraestrutura , Evolução Biológica , DNA Fúngico/análise , Fungos/metabolismo , Membranas Intracelulares/ultraestrutura , Bicamadas Lipídicas , Microscopia Eletrônica , Microscopia Imunoeletrônica , Mitocôndrias/genética , Mitocôndrias/ultraestrutura , Organelas/genética , Organelas/metabolismo , Saccharomyces cerevisiae/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...