Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Methods ; 16(19): 3007-3019, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38695537

RESUMO

We present a colorimetric probe based on polyvinylpyrrolidone-capped gold nanoparticles (PVP-AuNPs) that is sensitive and selective for cysteine (Cys). A microfluidic paper-based analytical device (µ-PAD) with embedded dried PVP-AuNPs at the polyethersulfone (PES) paper surface is used for Cys detection. When thiol molecules attach to PVP-AuNPs in the presence of Cys, they clump together, and this causes the solution's color to shift from red to blue within 5 minutes. The device is capable of detecting Cys levels between 1.0 µM and 50.0 µM with a limit of detection (LOD) of 0.2 µM under optimized conditions. The stability of the µ-PAD was tested for 100 days, demonstrating re-dispersibility to detect Cys levels in blood. Dried PVP-AuNP-µPADs were integrated with blood plasma separation modules for point-of-care (POC) Cys detection. Consequently, the device shows potential as a self-sustaining, quantification platform with a recovery percentage ranging from 98.44 to 111.9 in clinical samples.


Assuntos
Colorimetria , Cisteína , Ouro , Limite de Detecção , Nanopartículas Metálicas , Papel , Sistemas Automatizados de Assistência Junto ao Leito , Ouro/química , Cisteína/sangue , Cisteína/química , Nanopartículas Metálicas/química , Humanos , Colorimetria/métodos , Colorimetria/instrumentação , Povidona/química , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos
2.
Mol Biotechnol ; 66(3): 378-401, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37166577

RESUMO

Efficient healthcare management demands prompt decision-making based on fast diagnostics tools, astute data analysis, and informatics analysis. The rapid detection of analytes at the point of care is ensured using microfluidics in synergy with nanotechnology and biotechnology. The nanobiosensors use nanotechnology for testing, rapid disease diagnosis, monitoring, and management. In essence, nanobiosensors detect biomolecules through bioreceptors by modulating the physicochemical signals generating an optical and electrical signal as an outcome of the binding of a biomolecule with the help of a transducer. The nanobiosensors are sensitive and selective and play a significant role in the early identification of diseases. This article reviews the detection method used with the microfluidics platform for nanobiosensors and illustrates the benefits of combining microfluidics and nanobiosensing techniques by various examples. The fundamental aspects, and their application are discussed to illustrate the advancement in the development of microfluidics-based nanobiosensors and the current trends of these nano-sized sensors for point-of-care diagnosis of various diseases and their function in healthcare monitoring.


Assuntos
Técnicas Biossensoriais , Microfluídica , Técnicas Biossensoriais/métodos , Nanotecnologia/métodos , Biotecnologia
3.
Int J Biol Macromol ; 241: 124614, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37119905

RESUMO

In vitro technology facilitates the replication of in vivo tissues more accurately than conventional cell-based artificial organs, enabling researchers to mimic both the structural and functional characteristics of natural systems. Here, we demonstrate a novel spiral-shaped self-pumping microfluidic device for the cleaning of urea by incorporating reduced graphene oxide (rGO) modified a Polyethersulfone (PES) nanohybrid membrane for efficient filtration capacity. The spiral-shaped microfluidic chip is a two-layer configuration of polymethyl methacrylate (PMMA) integrated with the modified filtration membrane. In essence, the device replicates the main features of the kidney (Glomerulus), i.e., a nano-porous membrane modified with reduced graphene oxide to separate the sample fluid from the upper layer and collect the biomolecule-free fluid through the bottom of the device. We have achieved a cleaning efficiency of 97.94 ± 0.6 % using this spiral shaped microfluidic system. The spiral-shaped microfluidic device integrated with nanohybrid membrane has potential for organ-on-a-chips applications.


Assuntos
Grafite , Microfluídica , Ureia , Grafite/química , Dispositivos Lab-On-A-Chip
4.
Biotechnol Bioeng ; 119(12): 3393-3407, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36207787

RESUMO

Late state-of-the-art analytical methodologies in chromatography, spectroscopy, and electroanalysis have been developed to meet the challenges of changing environmental and health issues. The modern trends in developing new protocols emphasize economic, portable, nano, or even smaller sample sizes and less time-consuming processes. This has led to the development of technology-based biosensors which meet most of the above requirements. The lab-on-chip technology exploiting enzyme-based biosensors has made the analytical processes very efficient, accurate, affordable, and requiring nano-scale sample sizes. In this review, an attempt is being made to review the literature based on state-of-the-art technology of enzyme-based biosensors for the detection of biomolecules.


Assuntos
Técnicas Biossensoriais , Sistemas Automatizados de Assistência Junto ao Leito , Técnicas Biossensoriais/métodos
5.
Lab Chip ; 20(15): 2717-2723, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32579649

RESUMO

A high streaming potential and current were generated using a gold-nanoparticle-embedded patterned PDMS microchannel array. Gold nanoparticles with dimensions of ∼70 nm were prepared inside a hydrophobic patterned PDMS microchannel. The channel array was developed on a ridge-shaped patterned surface by performing soft lithography using UV-laser micromachining with a ridge spacing of 27.0 µm, width of 22.0 µm, and height of 16.0 µm. Subsequently, tests were conducted in which ultrapure water, solutions of 0.1 M NaCl, 0.1 M HCl and 40% H2O2 were passed through the patterned channel array at various flow rates and pressures using a microfluidic pump wherein the channel inlet and outlet acted as collector electrodes. A maximum streaming potential of 2.6 V, a current of 1.3 µA, and a maximum power density of 4.3 µW cm-2 were obtained for this gold-nanoparticle-embedded PDMS channel with ultrapure water as the working fluid at an inlet pressure of 1 bar. The generated power density here was ∼256 times higher than that for the PDMS channel array without gold nanoparticles using ultrapure water as the working fluid, confirming the benefit of gold nanoparticles in the channel array, which may have potential applications in microwatt-powered lab-on-chip devices.

6.
Lab Chip ; 16(18): 3589-96, 2016 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-27523803

RESUMO

Energy generation using liquid movement over a graphene surface generally demands a very high rate of flow (e.g.∼100 ml min(-1)). In addition, a continuous flow of liquid is unable to generate a desired voltage, as it needs modification of the substrate such as development of nanopores and criss-cross network structures. Here, we report an ultra-low-cost yet highly efficient portable device for energy conversion, by exploiting the capillary flow of an electrolyte on a filter paper matrix in which a naturally deposited gradient of reduced graphene oxide is induced through chemical synthesis. In addition, the fibres and pores present in the paper offer a criss-cross network, acting as a natural splitter of a continuous flow into tiny droplets. Our methodology thus obviates the need for any elaborate procedure for pre-generation of droplets. Further, we fabricate the necessary electrodes on filter paper by simply scribing pencil tips on the same filter paper, which facilitates the necessary electrochemical reactions. Effectively, at the anode, electrons are released, which travel through the outer circuit for cation reduction at the cathode and deliver an electrical output (voltage/current), realizing the conversion of the chemical form of energy to the electrical form in the filter paper. An absorbent pad at the channel outlet ensures continuous flow of fresh solution in the device, resulting in an inexpensive platform for power generation over a prolonged period of time. A maximum current density of 325 mA cm(-2) and a maximum power density of 53 mW cm(-2) have been observed, which significantly outweigh the capabilities of other reported devices fabricated for similar purposes.

7.
Analyst ; 140(6): 1817-21, 2015 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-25655365

RESUMO

A paper based microfluidic device is fabricated that can rapidly detect very low concentrations of uric acid (UA) using 3,5,3',5'-tetramethyl benzidine (TMB), H2O2 and positively charged gold nanoparticles ((+)AuNPs). In the presence of (+)AuNPs, H2O2 reacts with TMB to produce a bluish-green colour which becomes colourless on reaction with UA. This colorimetric method can detect as low as 8.1 ppm of UA within <20 minutes on white filter paper. This technique provides an alternative way for UA detection.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Técnicas Analíticas Microfluídicas/instrumentação , Papel , Ácido Úrico/análise , Benzidinas/química , Compostos Cromogênicos/química , Colorimetria/instrumentação , Desenho de Equipamento , Peróxido de Hidrogênio/química , Limite de Detecção
8.
Lab Chip ; 14(19): 3800-8, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25110161

RESUMO

We demonstrate the potential of a converging-diverging microchannel to split a stream of nanoparticles towards the interfacial region of the dispersed and the carrier phases, introduced through the middle inlet and through the remaining two inlets respectively, while maintaining a low Reynolds number limit (<10) for the flow of both phases. In addition to the splitting of passive tracer particles, such as polystyrene beads as used herein, the present setup has the potential to be utilized for a controlled reaction and thereby the separation of products towards an intended location, as observed from the experimentation with silver-nanoparticles and hydrogen-peroxide solution. Moreover, the microscale dimension of the channel allows controlled deposition of the reaction product over the bottom surface of the channel, allowing the possibility of bottom-up fabrication of microscale features. We unveil the underlying hydrodynamics that lead to such behaviours through numerical simulations, which are consistent with the experimental observations. The phenomenological features are found to be guided by the splitting of the intrinsic streamlines conforming to the flow geometry under consideration.

9.
Lab Chip ; 14(10): 1661-4, 2014 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-24671425

RESUMO

We develop a paper based fuel cell in which fluids flow through a capillary transport mechanism. The pencil stroked graphite electrodes take oxygen from quiescent air. This simple and efficient paper fuel cell can generate energy to the tune of 32 mW cm(-2) over a prolonged duration of around 1000 minutes, and with the consumption of a very low volume of formic acid as fuel (~1 mL).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...