Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 5(25): 14890-14899, 2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32637763

RESUMO

The construction of sophisticated molecular architectures from chemical subunits requires careful selection of the spacers, precise synthetic strategies, and substantial efforts. Here, we report a series of binuclear double-stranded helicates synthesized from different combinations of pyridyl hydrazone-based multidentate ligands (H2 1, H2 2, H2 3) by increasing the methylene spacer and transition metals (Co, Ni, and Zn). The ligands H2 1 (N'1,N'3-bis((E)-pyridin-2-ylmethylene)malonohydrazide), H2 2 (N'1,N'4-bis((E)-pyridin-2-ylmethylene)succinohydrazide), and H2 3 (N'1,N'5-bis((E)-pyridin-2-ylmethylene)glutarohydrazide) and their respective complexes with Co, Ni, and Zn were obtained. Single-crystal X-ray diffraction studies of these binuclear metallohelicates confirm the double-stranded helical structure of the complexes derived from H2 2. The set of helicates Co-1, Co-2, and Co-3; Ni-1, Ni-2, and Ni-3; and Zn-1, Zn-2, and Zn-3 were investigated for its catalytic activity in the cyclic carbonate formation reaction. Intriguingly, among the synthesized catalyst, Co-1 was found to be better in terms of conversions with the calculated TOF (turnover frequency) of 128/h. The catalytic performance was significantly improved by adding 0.2 mmol of tetrabutylammonium bromide by achieving 76% conversion in 30 min, with the observed TOF of 15,934 h-1/molecule and 7967 h-1/Co center. The results obtained herein show that the double-stranded helicates are effective catalysts for converting both terminal and non-terminal epoxides into their corresponding cyclic carbonates. The striking feature of this catalytic protocol lies in demonstrating the catalytic activity for the conversion of diol to cyclic carbonate, and the detailed kinetic experiments tempted us to propose a tentative reaction mechanism for this conversion.

2.
Inorg Chem ; 58(7): 4465-4479, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30929448

RESUMO

The ligand L1 of 4-methyl-2,6-diformylphenol and L2 of 4- tert-butyl-2,6-diformylphenol are synthesized through Schiff base condensation with rac-, ( R)-(+), or ( S)-(-)-1,1'-binaphthyl-2,2'-diamine (BNDA). As a result, the racemic L1rac, L2rac, and enantiopure L1RR, L1SS, L2RR, and L2SS ligands are obtained incorporating Cu(II) and Zn(II) salts by a simple one-pot metal template method. The series of dinuclear complexes of [M2LX2] (here, M = Cu2+, Zn2+; X = acetate ion, chloride ion; L = L1RR, L1SS, L1rac, L2RR, L2SS, L2rac) formulas are obtained in common. Among them, the single crystal X-ray structures for [Zn2L1rac(OAc)2] and [Zn2L1SSCl2] complexes are obtained. The detailed crystal structure and the chiroptical studies performed on these complexes dictates a self-sorting behavior in their self-assembly process and illustrate a chirality transfer from the ligand to the metal center on the complexes. The enantiopure dinuclear complexes [M2LRRX2] and [M2LSSX2] generate enantiopure ΛΛ and ΔΔ isomers, respectively, but the racemic complexes produce only homochiral ΛΛ and ΔΔ assemblies. The detailed studies based on UFLC (Ultra Fast Liquid Chromatography), CD, and single crystal X-ray structure together show the absence of heterochiral ΛΔ mesocate. All these complexes are adapted as catalysts for desymmetrization of various mesodiols, and the enantiopure complexes are found to give efficient enantioselectivity in desymmetrization of mesodiols with benzoyl chloride to monobenzoylated ester providing 98% yield and 92% ee.

3.
Inorg Chem ; 57(18): 11414-11421, 2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-30156108

RESUMO

A series of double-stranded binuclear helicates [Co2(H1)2]4+, [Co2(H2)2]4+, and [Co2(H3)2]4+, derived from monodeprotonated bis-pyridyl hydrazine-based ligands of H21, H22, and H23 with one, two, and three -CH2 spacers, were obtained. These asymmetric-carbon-free racemic helicates were separated into their ΔΔ and ΛΛ enantiomers. The resolved helicates were examined for the first time as enantioselective catalysts in asymmetric benzoylation and nitroaldol reactions.

4.
Angew Chem Int Ed Engl ; 55(33): 9625-9, 2016 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-27346062

RESUMO

Coordinatively unsaturated double-stranded helicates [(H2 L)2 Eu2 (NO3 )2 (H2 O)4 ](NO3 )4 , [(H2 L)2 Tb2 (H2 O)6 ](NO3 )6 , and [(H2 L)2 Tb2 (H2 O)6 ]Cl6 (H2 L=butanedioicacid-1,4-bis[2-(2-pyridinylmethylene)hydrazide]) are easily obtained by self-assembly from the ligand and the corresponding lanthanide(III) salts. The complexes are characterized by X-ray crystallography showing the helical arrangement of the ligands. Co-ligands at the metal ions can be easily substituted by appropriate anions. A specific luminescence response of AMP in presence of ADP, ATP, and other anions is observed. Specificity is assigned to the perfect size match of AMP to bridge the two metal centers and to replace quenching co-ligands in the coordination sphere.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...