Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 26(45): 11540-53, 2006 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-17093075

RESUMO

In traumatic brain injury (TBI), neurons surviving the primary insult may succumb through poorly understood secondary mechanisms. In vitro, cortical neurons exposed to stretch injury exhibited enhanced vulnerability to NMDA, apoptotic-like DNA fragmentation, peroxynitrite (PN) formation, and cytoplasmic cytochrome c accumulation. Surprisingly, caspase-3 activity was undetectable by both immunoblotting and fluorogenic activity assays. Therefore, we hypothesized that PN directly inhibits caspases in these neurons. Consistent with this, stretch injury in cultured neurons elicited tyrosine nitration of procaspase-3, but not caspase-9 or Apaf-1, suggesting a direct interaction of PN with caspase-3. In an ex vivo system, PN inhibited the activity of caspase-3, and this inhibition was reversible with the addition of the sulfhydryl reducing agent dithiothreitol, indicating that PN inhibits caspases by cysteinyl oxidation. Moreover, in cultures, the PN donor 3-morpholinosydnonimine (SIN-1) blocked staurosporine-induced caspase-3 activation and its downstream effects including PARP-1 [poly-(ADP-ribose) polymerase-1] cleavage and phosphotidylserine inversion, suggesting that peroxynitrite can inhibit caspase-3-mediated apoptosis. To examine these mechanisms in vivo, rats were exposed to a lateral fluid percussion injury (FPI). FPI caused increased neuronal protein nitration that colocalized with TUNEL staining, indicating that PN was associated with neurodegeneration. Caspase-3 activity was inhibited in brain lysates harvested after FPI and was restored by adding dithiothreitol. Our data show that caspase-mediated apoptosis is inhibited in neurons subjected to stretch in vitro and to TBI in vivo, mostly because of cysteinyl oxidation of caspase-3 by PN. However, this is insufficient to prevent cell death, indicating that the TBI therapy may, at a minimum, require a combination of both anti-apoptotic and anti-oxidant strategies.


Assuntos
Apoptose/efeitos dos fármacos , Lesões Encefálicas/patologia , Caspases/fisiologia , Inibição Neural/efeitos dos fármacos , Neurônios/patologia , Ácido Peroxinitroso , Animais , Western Blotting/métodos , Lesões Encefálicas/induzido quimicamente , Células Cultivadas , Córtex Cerebral/citologia , Citocromos c/metabolismo , Modelos Animais de Doenças , Embrião de Mamíferos , Inibidores Enzimáticos/farmacologia , Imuno-Histoquímica/métodos , Marcação In Situ das Extremidades Cortadas/métodos , Masculino , Camundongos , Molsidomina/análogos & derivados , Molsidomina/farmacologia , N-Metilaspartato/toxicidade , Neurônios/efeitos dos fármacos , Doadores de Óxido Nítrico/farmacologia , Estimulação Física/efeitos adversos , Ratos , Ratos Sprague-Dawley , Estaurosporina/farmacologia
2.
J Neurosci ; 24(37): 8106-23, 2004 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-15371512

RESUMO

Mild traumatic brain injuries are of major public health significance. Neurons in such injuries often survive the primary mechanical deformation only to succumb to subsequent insults. To study mechanisms of vulnerability of injured neurons to secondary insults, we used an in vitro model of sublethal mechanical stretch. Stretch enhanced the vulnerability of the neurons to excitotoxic insults, causing nuclear irregularities, DNA fragmentation, and death suggestive of apoptosis. However, the DNA degradation was not attributable to classical (caspase mediated) or caspase-independent apoptosis. Rather, it was associated with profound stretch-induced mitochondrial dysfunction and the overproduction of reactive oxygen species (ROS). Sublethally stretched neurons produced surprisingly high levels of ROS, but these in isolation were insufficient to kill the cells. To be lethal, the ROS also needed to combine with nitric oxide (NO) to form the highly reactive species peroxynitrite. Peroxynitrite was not produced after stretch alone and arose only after combining stretch with an insult capable of stimulating NO production, such as NMDA or an NO donor. This explained the exquisite sensitivity of sublethally stretched neurons to a secondary NMDA insult. ROS scavengers and NO synthase (NOS) inhibitors prevented cell death and DNA degradation. Moreover, inhibiting neuronal NOS activation by NMDA using peptides that perturb NMDA receptor-postsynaptic density-95 interactions also reduced protein nitration and cell death, indicating that the reactive nitrogen species produced were neuronal in origin. Our data explain the mechanism of enhanced vulnerability of sublethally injured neurons to secondary excitotoxic insults and highlight the importance of secondary mechanisms to the ultimate outcome of neurons in mild neurotrauma.


Assuntos
Neurônios/patologia , Estresse Mecânico , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Animais , Apoptose , Lesões Encefálicas/patologia , Calpaína/fisiologia , Núcleo Celular/patologia , Células Cultivadas/metabolismo , Células Cultivadas/patologia , Cisteína Endopeptidases/metabolismo , DNA/análise , Fragmentação do DNA , Inibidores Enzimáticos/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Marcação In Situ das Extremidades Cortadas , Técnicas In Vitro , Membranas Intracelulares/efeitos dos fármacos , Membranas Intracelulares/fisiologia , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , N-Metilaspartato/farmacologia , N-Metilaspartato/toxicidade , Neurônios/metabolismo , Neurotoxinas/farmacologia , Neurotoxinas/toxicidade , Óxido Nítrico/metabolismo , Doadores de Óxido Nítrico/farmacologia , Doadores de Óxido Nítrico/toxicidade , Óxido Nítrico Sintase/antagonistas & inibidores , Estresse Oxidativo , Ácido Peroxinitroso/metabolismo , Porfirinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/fisiologia , Proteínas Recombinantes de Fusão/biossíntese , Superóxido Dismutase/farmacologia
3.
Cell ; 115(7): 863-77, 2003 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-14697204

RESUMO

Excitotoxicity in brain ischemia triggers neuronal death and neurological disability, and yet these are not prevented by antiexcitotoxic therapy (AET) in humans. Here, we show that in neurons subjected to prolonged oxygen glucose deprivation (OGD), AET unmasks a dominant death mechanism perpetuated by a Ca2+-permeable nonselective cation conductance (IOGD). IOGD was activated by reactive oxygen/nitrogen species (ROS), and permitted neuronal Ca2+ overload and further ROS production despite AET. IOGD currents corresponded to those evoked in HEK-293 cells expressing the nonselective cation conductance TRPM7. In cortical neurons, blocking IOGD or suppressing TRPM7 expression blocked TRPM7 currents, anoxic 45Ca2+ uptake, ROS production, and anoxic death. TRPM7 suppression eliminated the need for AET to rescue anoxic neurons and permitted the survival of neurons previously destined to die from prolonged anoxia. Thus, excitotoxicity is a subset of a greater overall anoxic cell death mechanism, in which TRPM7 channels play a key role.


Assuntos
Hipóxia-Isquemia Encefálica/metabolismo , Ativação do Canal Iônico/fisiologia , Canais Iônicos/deficiência , Proteínas de Membrana , Degeneração Neural/metabolismo , Neurotoxinas/antagonistas & inibidores , Proteínas Quinases/deficiência , Animais , Ácido Araquidônico/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Cátions/metabolismo , Morte Celular/fisiologia , Linhagem Celular , Sobrevivência Celular/fisiologia , Glucose/deficiência , Humanos , Hipóxia-Isquemia Encefálica/fisiopatologia , Ativação do Canal Iônico/efeitos dos fármacos , Canais Iônicos/antagonistas & inibidores , Canais Iônicos/genética , Ferro/metabolismo , Camundongos , Degeneração Neural/fisiopatologia , Neurotoxinas/metabolismo , Inibidores de Proteínas Quinases , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases , Interferência de RNA , RNA Interferente Pequeno , Espécies Reativas de Oxigênio/metabolismo , Canais de Cátion TRPM
4.
Cell Calcium ; 34(4-5): 325-37, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12909079

RESUMO

Excitotoxicity contributes to neuronal degeneration in many acute CNS diseases, including ischemia, trauma, and epilepsy, and may also play a role in chronic diseases, such as amyotrophic lateral sclerosis (ALS). Key mediators of excitotoxic damage are Ca ions (Ca(2+)), which under physiological conditions govern a multitude of cellular processes, including cell growth, differentiation, and synaptic activity. Consequently, homeostatic mechanisms exist to maintain a low intracellular Ca(2+) ion concentration so that Ca(2+) signals remain spatially and temporally localized. This permits multiple independent Ca-mediated signaling pathways to occur in the same cell. In excitotoxicity, excessive synaptic release of glutamate can lead to the disregulation of Ca(2+) homeostasis. Glutamate activates postsynaptic receptors, including the ionotropic N-methyl-D-aspartate (NMDA), 2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl) proprionate (AMPA), and kainate receptors. Upon their activation, these open their associated ion channel to allow the influx of Ca(2+) and Na(+) ions. Although physiological elevations in intracellular Ca(2+) are salient to normal cell functioning, the excessive influx of Ca(2+) together with any Ca(2+) release from intracellular compartments can overwhelm Ca(2+)-regulatory mechanisms and lead to cell death. Although Ca(2+) disregulation is paramount to neurodegeneration, the exact mechanism by which Ca(2+) ions actually mediate excitotoxicity is less clear. One hypothesis outlined in this review suggests that Ca(2+)-dependent neurotoxicity occurs following the activation of distinct signaling cascades downstream from key points of Ca(2+) entry at synapses, and that triggers of these cascades are physically co-localized with specific glutamate receptors. Thus, we summarize the importance of Ca(2+) regulation in mammalian neurons and the excitotoxicity hypothesis, and focus on the molecular determinants of glutamate receptor-mediated excitotoxic mechanisms.


Assuntos
Cálcio/metabolismo , Degeneração Neural/fisiopatologia , Neurotoxinas/metabolismo , Animais , Cálcio/toxicidade , Sinalização do Cálcio/fisiologia , Ácido Glutâmico/fisiologia , Guanilato Quinases , Homeostase/efeitos dos fármacos , Homeostase/fisiologia , Humanos , Proteínas de Membrana/fisiologia , Degeneração Neural/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/fisiopatologia , Núcleosídeo-Fosfato Quinase/metabolismo , Receptores de AMPA/química , Receptores de AMPA/fisiologia , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/fisiologia
5.
Brain Res ; 976(2): 149-58, 2003 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-12763249

RESUMO

Glutamatergic-mediated nitric oxide (NO) production occurs via the N-methyl-D-aspartic acid (NMDA) postsynaptic density protein 95 (PSD95)-neuronal nitric oxide synthase (NOS1) ternary complex. To determine whether NOS1 is targeted to the membrane subsequent to NMDA receptor activation, we examined the effect of NMDA on NOS1 subcellular localization in nerve growth factor (NGF) differentiated PC12 cells. No effect on cell viability was observed using a range of NMDA concentrations from 500 to 1000 microM. Within 3 min of stimulation with 750 microM NMDA, increased cytoplasmic NOS1 immunostaining was observed with rapid membrane staining thereafter. This was inhibited by NMDAR inhibition with MK801. This observation was confirmed using subcellular fractionation and immunoblotting. Using 4, 5-diaminofluorescein diacetate (DAF2-DA) staining and a diazotization assay, concurrent NO production was observed. When PC 12 cells were co-treated with either NMDA and N(6)-nitro-L-arginine methyl ester hydrochloride (L-NAME) or (5R, 10S)-(+)-5-methyl-10, 11-dihydro-5H-dibenzo [a, d] cyclohepten-5, 10-imine hydrogen maleate (MK-801), nitric oxide (NO) generation was inhibited. Stimulation in a calcium-free medium did not increase NO levels. Although no evidence of cytotoxicity was observed utilizing either the MTT assay or measures of apoptosis within the maximal interval of NOS1 translocation, cell viability was reduced following 10 h of continuous NMDA exposure. While it has been shown that NMDA triggers NOS1 activation, these results indicate that NMDAR activation also mediates NOS1 targeting to the membrane. Our data validate that NGF-differentiated PC12 cells may be employed as a useful in vitro model to further study the regulation of NOS1 subsequent to NMDAR activation.


Assuntos
Agonistas de Aminoácidos Excitatórios/farmacologia , N-Metilaspartato/farmacologia , Neurônios/enzimologia , Óxido Nítrico Sintase/metabolismo , Animais , Diferenciação Celular , Membrana Celular/enzimologia , Sobrevivência Celular/efeitos dos fármacos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo I , Células PC12 , Ratos , Frações Subcelulares/enzimologia
6.
Expert Rev Mol Med ; 5(30): 1-22, 2003 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-14987406

RESUMO

Brain injury following cerebral ischaemia (stroke) involves a complex combination of pathological processes, including excitotoxicity and inflammation leading to necrotic and apoptotic forms of cell death. At the cellular level, excitotoxicity is mediated by glutamate and its cognate receptors, resulting in increased intracellular calcium and free radical production, and eventual cell death. Recent evidence suggests that scaffolding molecules that associate with glutamate receptors at the postsynaptic density allow coupling of receptor activity to specific second messengers capable of mediating excitotoxicity. These findings have important implications in the search for effective neuroprotective therapies in treating stroke.


Assuntos
Degeneração Neural/etiologia , Neurotoxinas/toxicidade , Acidente Vascular Cerebral/complicações , Animais , Cálcio/metabolismo , Sistema Nervoso Central/efeitos dos fármacos , Aminoácidos Excitatórios/toxicidade , Humanos , Hipóxia-Isquemia Encefálica/metabolismo , Modelos Biológicos , Degeneração Neural/induzido quimicamente , Espécies Reativas de Oxigênio/metabolismo , Receptores de Glutamato/metabolismo , Receptores de Glutamato/fisiologia , Acidente Vascular Cerebral/etiologia , Sinapses/metabolismo
7.
J Neurotrauma ; 20(12): 1377-95, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14748985

RESUMO

Traumatic brain injury causes neuronal disruption and triggers secondary events leading to additional neuronal death. To study injuries triggered by secondary events, we exposed cultured cortical neurons to sublethal mechanical stretch, thus eliminating confounding death from primary trauma. Sublethally stretched neurons maintained cell membrane integrity, viability, and electrophysiological function. However, stretching induced in the cells a heightened vulnerability to subsequent challenges with L-glutamate or NMDA. This heightened vulnerability was specifically mediated by NMDA receptors (NMDARs), as stretched neurons did not become more vulnerable to either kainate toxicity or to that induced by the Ca(2+) ionophore A23187. Stretch-enhanced vulnerability to NMDA occurred independently of endogenous glutamate release, but required Ca(2+) and Na(+) influx through NMDARs. Stretch did not affect the electrophysiological properties of NMDARs nor excitatory synaptic activity, indicating that specificity of enhanced vulnerability to NMDA involves postsynaptic mechanisms downstream from NMDARs. To test whether this specificity requires physical interactions between NMDARs and cytoskeletal elements, we perturbed actin filaments and microtubules, both of which are linked to NMDARs. This had no effect on the stretch-induced vulnerability to NMDA, suggesting that sublethal stretch does not affect cell survival through the cytoskeleton. Our data illustrate that sublethal in vitro stretch injury triggers distinct signaling pathways that lead to secondary injury, rather than causing a generalized increase in vulnerability to secondary insults.


Assuntos
Córtex Cerebral/efeitos dos fármacos , Agonistas de Aminoácidos Excitatórios/toxicidade , Hipocampo/efeitos dos fármacos , N-Metilaspartato/toxicidade , Neurônios/efeitos dos fármacos , Animais , Lesões Encefálicas/fisiopatologia , Técnicas de Cultura de Células , Córtex Cerebral/fisiopatologia , Hipocampo/fisiopatologia , Camundongos , Neuroglia/efeitos dos fármacos , Neurônios/fisiologia , Estresse Mecânico
8.
Science ; 298(5594): 846-50, 2002 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-12399596

RESUMO

N-methyl-D-aspartate receptors (NMDARs) mediate ischemic brain damage but also mediate essential neuronal excitation. To treat stroke without blocking NMDARs, we transduced neurons with peptides that disrupted the interaction of NMDARs with the postsynaptic density protein PSD-95. This procedure dissociated NMDARs from downstream neurotoxic signaling without blocking synaptic activity or calcium influx. The peptides, when applied either before or 1 hour after an insult, protected cultured neurons from excitotoxicity, reduced focal ischemic brain damage in rats, and improved their neurological function. This approach circumvents the negative consequences associated with blocking NMDARs and may constitute a practical stroke therapy.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Infarto Cerebral/tratamento farmacológico , Proteínas do Tecido Nervoso/metabolismo , Peptídeos/farmacologia , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/metabolismo , Sequência de Aminoácidos , Animais , Encéfalo/metabolismo , Isquemia Encefálica/metabolismo , Cálcio/metabolismo , Células Cultivadas , Infarto Cerebral/metabolismo , GMP Cíclico/metabolismo , Proteína 4 Homóloga a Disks-Large , Guanilato Quinases , Técnicas In Vitro , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Proteínas de Membrana , Camundongos , Camundongos Endogâmicos C57BL , N-Metilaspartato/farmacologia , Proteínas do Tecido Nervoso/química , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Técnicas de Patch-Clamp , Peptídeos/administração & dosagem , Peptídeos/uso terapêutico , Ligação Proteica , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/farmacologia , Proteínas Recombinantes de Fusão/uso terapêutico , Transdução de Sinais , Transmissão Sináptica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...