Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 30(34): 343001, 2018 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-30015330

RESUMO

Rapid development of micro- and nanofabrication methods have provoked interest and enabled experimental studies of electronic properties of a vast class of (sub)micrometer-size solid state systems. Mesoscopic-size hybrid structures, containing superconducting elements, have become interesting objects for basic research studies and various applications, ranging from medical and astrophysical sensors to quantum computing. One of the most important aspects of physics, governing the behavior of such systems, is the finite concentration of nonequilibrium quasiparticles, present in a superconductor even well below the temperature of superconducting transition. Those nonequilibrium excitations might limit the performance of a variety of superconducting devices, like superconducting qubits, single-electron turnstiles and microrefrigerators. On the contrary, in some applications, like detectors of electromagnetic radiation, the nonequilibrium state is essential for their operation. It is therefore of vital importance to study the mechanisms of nonequilibrium quasiparticle relaxation in superconductors of mesoscopic dimensions, where the whole structure can be considered as an 'interface'. At early stages of research the problem was mostly studied in relatively massive systems and at high temperatures close to the critical temperature of a superconductor. We review the recent progress in studies of nonequilibrium quasiparticle relaxation in superconductors including the low temperature limit. We also discuss the open physical questions and perspectives of development in the field.

2.
Nanotechnology ; 27(47): 47LT02, 2016 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-27782000

RESUMO

The topic of superconductivity in strongly disordered materials has attracted significant attention. These materials appear to be rather promising for fabrication of various nanoscale devices such as bolometers and transition edge sensors of electromagnetic radiation. The vividly debated subject of intrinsic spatial inhomogeneity responsible for the non-Bardeen-Cooper-Schrieffer relation between the superconducting gap and the pairing potential is crucial both for understanding the fundamental issues of superconductivity in highly disordered superconductors, and for the operation of corresponding nanoelectronic devices. Here we report an experimental study of the electron transport properties of narrow NbN nanowires with effective cross sections of the order of the debated inhomogeneity scales. The temperature dependence of the critical current follows the textbook Ginzburg-Landau prediction for the quasi-one-dimensional superconducting channel I c âˆ¼ (1-T/T c)3/2. We find that conventional models based on the the phase slip mechanism provide reasonable fits for the shape of R(T) transitions. Better agreement with R(T) data can be achieved assuming the existence of short 'weak links' with slightly reduced local critical temperature T c. Hence, one may conclude that an 'exotic' intrinsic electronic inhomogeneity either does not exist in our structures, or, if it does exist, it does not affect their resistive state properties, or does not provide any specific impact distinguishable from conventional weak links.

3.
Nanoscale Res Lett ; 11(1): 364, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27535694

RESUMO

Tunneling I-V characteristics between very narrow titanium nanowires and "massive" superconducting aluminum were measured. The clear trend was observed: the thinner the titanium electrode, the broader the singularity at eV = Δ1(Al) + Δ2(Ti). The phenomenon can be explained by broadening of the gap edge of the quasi-one-dimensional titanium channels due to quantum fluctuations of the order parameter modulus |Δ2|. The range of the nanowire diameters, where the effect is pronounced, correlates with dimensions where the phase fluctuations of the complex superconducting order parameter Δ = |Δ|e(iφ), the quantum phase slips, broadening the R(T) dependencies, have been observed.

4.
Phys Rev Lett ; 109(18): 187001, 2012 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-23215316

RESUMO

Quantum fluctuations in quasi-one-dimensional superconducting channels leading to spontaneous changes of the phase of the order parameter by 2π, alternatively called quantum phase slips (QPS), manifest themselves as the finite resistance well below the critical temperature of thin superconducting nanowires and the suppression of persistent currents in tiny superconducting nanorings. Here we report the experimental evidence that in a current-biased superconducting nanowire the same QPS process is responsible for the insulating state--the Coulomb blockade. When exposed to rf radiation, the internal Bloch oscillations can be synchronized with the external rf drive leading to formation of quantized current steps on the I-V characteristic. The effects originate from the fundamental quantum duality of a Josephson junction and a superconducting nanowire governed by QPS--the QPS junction.

5.
Nature ; 484(7394): 355-8, 2012 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-22517162

RESUMO

A hundred years after the discovery of superconductivity, one fundamental prediction of the theory, coherent quantum phase slip (CQPS), has not been observed. CQPS is a phenomenon exactly dual to the Josephson effect; whereas the latter is a coherent transfer of charges between superconducting leads, the former is a coherent transfer of vortices or fluxes across a superconducting wire. In contrast to previously reported observations of incoherent phase slip, CQPS has been only a subject of theoretical study. Its experimental demonstration is made difficult by quasiparticle dissipation due to gapless excitations in nanowires or in vortex cores. This difficulty might be overcome by using certain strongly disordered superconductors near the superconductor-insulator transition. Here we report direct observation of CQPS in a narrow segment of a superconducting loop made of strongly disordered indium oxide; the effect is made manifest through the superposition of quantum states with different numbers of flux quanta. As with the Josephson effect, our observation should lead to new applications in superconducting electronics and quantum metrology.

6.
Nanotechnology ; 19(5): 055301, 2008 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-21817606

RESUMO

We report a new approach for progressive and well-controlled downsizing of nanostructures below the 10 nm scale. A low energetic ion beam (Ar(+)) is used for gentle surface erosion, progressively shrinking the dimensions with ∼1 nm accuracy. The method enables shaping of the nanostructure geometry and polishing of the surface. The process is clean room/high vacuum compatible being suitable for various applications. Apart from technological advantages, the method enables the study of various size phenomena on the same sample between sessions of ion beam treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...