Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-35329250

RESUMO

While athletes have high exposures to air pollutants due to their increased breathing rates, sport governing bodies have little guidance to support events scheduling or protect stadium users. A key limitation for this is the lack of hyper-local, high time-resolved air quality data representative of exposures in stadia. This work aimed to evaluate whether air quality sensors can describe ambient air quality in Athletics stadia. Sensing nodes were deployed in 6 stadia in major cities around the globe, monitoring NO2, O3, NO, PM10, PM2.5, PM1, CO, ambient temperature, and relative humidity. Results demonstrated that the interpretation of hourly pollutant patterns, in combination with self-organising maps (SOMs), enabled the interpretation of probable emission sources (e.g., vehicular traffic) and of atmospheric processes (e.g., local vs. regional O formation). The ratios between PM size fractions provided insights into potential emission sources (e.g., local dust re-suspension) which may help design mitigation strategies. The high resolution of the data facilitated identifying optimal periods of the day and year for scheduling athletic trainings and/or competitions. Provided that the necessary data quality checks are applied, sensors can support stadium operators in providing athlete communities with recommendations to minimise exposure and provide guidance for event scheduling.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Esportes , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Poluição do Ar/prevenção & controle , Atletas , Cidades , Monitoramento Ambiental/métodos , Humanos , Material Particulado/análise
2.
Nanomaterials (Basel) ; 11(7)2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34361203

RESUMO

In this paper, we demonstrate the realization process of a pragmatic approach on developing a template for capturing field monitoring data in nanomanufacturing processes. The template serves the fundamental principles which make data scientifically Findable, Accessible, Interoperable and Reusable (FAIR principles), as well as encouraging individuals to reuse it. In our case, the data shepherds' (the guider of data) template creation workflow consists of the following steps: (1) Identify relevant stakeholders, (2) Distribute questionnaires to capture a general description of the data to be generated, (3) Understand the needs and requirements of each stakeholder, (4) Interactive simple communication with the stakeholders for variables/descriptors selection, and (5) Design of the template and annotation of descriptors. We provide an annotated template for capturing exposure field campaign monitoring data, and increase their interoperability, while comparing it with existing templates. This paper enables the data creators of exposure field campaign data to store data in a FAIR way and helps the scientific community, such as data shepherds, by avoiding extensive steps for template creation and by utilizing the pragmatic structure and/or the template proposed herein, in the case of a nanotechnology project (Anticipating Safety Issues at the Design of Nano Product Development, ASINA).

3.
Nanomaterials (Basel) ; 11(6)2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34201308

RESUMO

In this paper we describe the pragmatic approach of initiating, designing and implementing the Data Management Plan (DMP) and the data FAIRification process in the multidisciplinary Horizon 2020 nanotechnology project, Anticipating Safety Issues at the Design Stage of NAno Product Development (ASINA). We briefly describe the general DMP requirements, emphasizing that the initial steps in the direction towards data FAIRification must be conceptualized and visualized in a systematic way. We demonstrate the use of a generic questionnaire to capture primary data and metadata description from our consortium (data creators/experimentalists and data analysts/modelers). We then display the interactive process with external FAIR data initiatives (data curators/quality assessors), regarding guidance for data and metadata capturing and future integration into repositories. After the preliminary data capturing and FAIRification template is formed, the inner-communication process begins between the partners, which leads to developing case-specific templates. This paper assists future data creators, data analysts, stewards and shepherds engaged in the multi-faceted data shepherding process, in any project, by providing a roadmap, demonstrated in the case of ASINA.

4.
Nanotoxicology ; 14(5): 612-637, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32100604

RESUMO

The exercise of non-testing approaches in nanoparticles (NPs) hazard assessment is necessary for the risk assessment, considering cost and time efficiency, to identify, assess, and classify potential risks. One strategy for investigating the toxicological properties of a variety of NPs is by means of computational tools that decode how nano-specific features relate to toxicity and enable its prediction. This literature review records systematically the data used in published studies that predict nano (eco)-toxicological endpoints using machine learning models. Instead of seeking mechanistic interpretations this review maps the pathways followed, involving biological features in relation to NPs exposure, their physico-chemical characteristics and the most commonly predicted outcomes. The results, derived from published research of the last decade, are summarized visually, providing prior-based data mining paradigms to be readily used by the nanotoxicology community in computational studies.


Assuntos
Aprendizado de Máquina , Nanopartículas/química , Nanopartículas/toxicidade , Simulação por Computador , Humanos , Medição de Risco
5.
Nanomaterials (Basel) ; 10(1)2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31936210

RESUMO

Machine Learning (ML) techniques have been applied in the field of nanotoxicology with very encouraging results. Adverse effects of nanoforms are affected by multiple features described by theoretical descriptors, nano-specific measured properties, and experimental conditions. ML has been proven very helpful in this field in order to gain an insight into features effecting toxicity, predicting possible adverse effects as part of proactive risk analysis, and informing safe design. At this juncture, it is important to document and categorize the work that has been carried out. This study investigates and bookmarks ML methodologies used to predict nano (eco)-toxicological outcomes in nanotoxicology during the last decade. It provides a review of the sequenced steps involved in implementing an ML model, from data pre-processing, to model implementation, model validation, and applicability domain. The review gathers and presents the step-wise information on techniques and procedures of existing models that can be used readily to assemble new nanotoxicological in silico studies and accelerates the regulation of in silico tools in nanotoxicology. ML applications in nanotoxicology comprise an active and diverse collection of ongoing efforts, although it is still in their early steps toward a scientific accord, subsequent guidelines, and regulation adoption. This study is an important bookend to a decade of ML applications to nanotoxicology and serves as a useful guide to further in silico applications.

7.
Sci Total Environ ; 479-480: 267-76, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24565859

RESUMO

The maximum cumulative ratio (MCR) method allows the categorisation of mixtures according to whether the mixture is of concern for toxicity and if so whether this is driven by one substance or multiple substances. The aim of the present study was to explore, by application of the MCR approach, whether health risks due to indoor air pollution are dominated by one substance or are due to concurrent exposure to various substances. Analysis was undertaken on monitoring data of four European indoor studies (giving five datasets), involving 1800 records of indoor air or personal exposure. Application of the MCR methodology requires knowledge of the concentrations of chemicals in a mixture together with health-based reference values for those chemicals. For this evaluation, single substance health-based reference values (RVs) were selected through a structured review process. The MCR analysis found high variability in the proportion of samples of concern for mixture toxicity. The fraction of samples in these groups of concern varied from 2% (Flemish schools) to 77% (EXPOLIS, Basel, indoor), the variation being due not only to the variation in indoor air contaminant levels across the studies but also to other factors such as differences in number and type of substances monitored, analytical performance, and choice of RVs. However, in 4 out of the 5 datasets, a considerable proportion of cases were found where a chemical-by-chemical approach failed to identify the need for the investigation of combined risk assessment. Although the MCR methodology applied in the current study provides no consideration of commonality of endpoints, it provides a tool for discrimination between those mixtures requiring further combined risk assessment and those for which a single-substance assessment is sufficient.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/estatística & dados numéricos , Monitoramento Ambiental/métodos , Poluição do Ar em Ambientes Fechados/análise , Habitação/estatística & dados numéricos , Humanos , Exposição por Inalação/análise , Exposição por Inalação/estatística & dados numéricos , Medição de Risco
9.
J Expo Sci Environ Epidemiol ; 17 Suppl 1: S90-100, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17668010

RESUMO

Understanding where and how chemicals are used throughout their life cycle is becoming increasingly important. In 2003, within the context of REACH and GPSD legislation, the European Commission started developing a European and global infrastructure of exposure methods and tools. The infrastructure aims (1) to link modeling tools and exposure-related data and scenarios in a single framework so that harmonized exposure assessment procedures can be developed for consumer products in the EU and (2) to make this framework flexible enough to allow global application. A number of issues are raised by a global infrastructure of consumer exposure modeling that answers to multi-legislative mandates. These include transparency, consistency, usability, and defensibility of the models, including the relevant degree of complexity for priority setting versus assessment. As part of the initiative to set up a harmonized global infrastructure on consumer exposure assessment, these issues were presented, discussed, and further developed in a series of European Commission-sponsored workshops organized in October 2004 and June 2005 as part of the "Harmonization of Consumer Exposure Models on a Global Scale" project. The project focused on development, harmonization, and validation of consumer exposure modeling approaches. The workshops included experts from the EU, USA, Japan, and Canada. The conclusions and recommendations made on the basis of this work are described. To help achieve harmonization of approaches, the European Commission's Joint Research Centre is proposing a framework (1) to compare information on elements of chemical risk assessment to understand exposure regulations in different countries, (2) to save time and expense by sharing information and models, and (3) to promote credible science through better communication among organizations and by peer review of assessments and assessment procedures.


Assuntos
Qualidade de Produtos para o Consumidor , Exposição Ambiental/análise , Modelos Biológicos , Medição de Risco/métodos , Canadá , Indústria Química/legislação & jurisprudência , Tomada de Decisões , Exposição Ambiental/prevenção & controle , União Europeia , Política de Saúde , Humanos , Cooperação Internacional , Relações Interprofissionais , Japão , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...