Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38559131

RESUMO

Schizophrenia is characterized by substantial alterations in brain function, and previous studies suggest insulin signaling pathways, particularly involving AKT, are implicated in the pathophysiology of the disorder. This study demonstrates elevated mRNA expression of AKT1-3 in neurons from schizophrenia subjects, contrary to unchanged or diminished total AKT protein expression reported in previous postmortem studies, suggesting a potential decoupling of transcript and protein levels. Sex-specific differential AKT activity was observed, indicating divergent roles in males and females with schizophrenia. Alongside AKT, upregulation of PDPK1, a critical component of the insulin signaling pathway, and several protein phosphatases known to regulate AKT were detected. Moreover, enhanced expression of the transcription factor FOXO1, a regulator of glucose metabolism, hints at possible compensatory mechanisms related to insulin signaling dysregulation. Findings were largely independent of antipsychotic medication use, suggesting inherent alterations in schizophrenia. These results highlight the significance of AKT and related signaling pathways in schizophrenia, proposing that these changes might represent a compensatory response to a primary defect of conical insulin signaling pathways. This research underscores the need for a detailed understanding of these signaling pathways for the development of effective therapeutic strategies.

2.
Mol Biol Cell ; 32(21): ar30, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34473561

RESUMO

MyTH4-FERM (MF) myosins evolved to play a role in the creation and function of a variety of actin-based membrane protrusions that extend from cells. Here we performed an analysis of the MF myosins, Myo7A, Myo7B, and Myo10, to gain insight into how they select for their preferred actin networks. Using enterocytes that create spatially separated actin tracks in the form of apical microvilli and basal filopodia, we show that actin track selection is principally guided by the mode of oligomerization of the myosin along with the identity of the motor domain, with little influence from the specific composition of the lever arm. Chimeric variants of Myo7A and Myo7B fused to a leucine zipper parallel dimerization sequence in place of their native tails both selected apical microvilli as their tracks, while a truncated Myo10 used its native antiparallel coiled-coil to traffic to the tips of filopodia. Swapping lever arms between the Class 7 and 10 myosins did not change actin track preference. Surprisingly, fusing the motor-neck region of Myo10 to a leucine zipper or oligomerization sequences derived from the Myo7A and Myo7B cargo proteins USH1G and ANKS4B, respectively, re-encoded the actin track usage of Myo10 to apical microvilli with significant efficiency.


Assuntos
Movimento/fisiologia , Miosinas/metabolismo , Domínios Proteicos/fisiologia , Actinas/metabolismo , Células CACO-2 , Enterócitos/metabolismo , Células HEK293 , Humanos , Microvilosidades/metabolismo , Miosinas/genética , Fagocitose/fisiologia , Domínios Proteicos/genética , Pseudópodes/metabolismo
3.
J Biol Chem ; 295(36): 12588-12604, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32636301

RESUMO

Nutrient-transporting enterocytes interact with their luminal environment using a densely packed collection of apical microvilli known as the brush border. Assembly of the brush border is controlled by the intermicrovillar adhesion complex (IMAC), a protocadherin-based complex found at the tips of brush border microvilli that mediates adhesion between neighboring protrusions. ANKS4B is known to be an essential scaffold within the IMAC, although its functional properties have not been thoroughly characterized. We report here that ANKS4B is directed to the brush border using a noncanonical apical targeting sequence that maps to a previously unannotated region of the scaffold. When expressed on its own, this sequence targeted to microvilli in the absence of any direct interaction with the other IMAC components. Sequence analysis revealed a coiled-coil motif and a putative membrane-binding basic-hydrophobic repeat sequence within this targeting region, both of which were required for the scaffold to target and mediate brush border assembly. Size-exclusion chromatography of the isolated targeting sequence coupled with in vitro brush border binding assays suggests that it functions as an oligomer. We further show that the corresponding sequence found in the closest homolog of ANKS4B, the scaffold USH1G that operates in sensory epithelia as part of the Usher complex, lacks the inherent ability to target to microvilli. This study further defines the underlying mechanism of how ANKS4B targets to the apical domain of enterocytes to drive brush border assembly and identifies a point of functional divergence between the ankyrin repeat-based scaffolds found in the IMAC and Usher complex.


Assuntos
Proteínas de Transporte/metabolismo , Enterócitos/metabolismo , Microvilosidades/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Células CACO-2 , Proteínas de Transporte/genética , Adesão Celular , Células HEK293 , Humanos , Camundongos , Microvilosidades/genética , Complexos Multiproteicos/genética , Proteínas do Tecido Nervoso/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...