Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Oncogene ; 41(45): 4960-4970, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36207533

RESUMO

MYC is a transcription factor frequently overexpressed in cancer. To determine how MYC drives the neoplastic phenotype, we performed transcriptomic analysis using a panel of MYC-driven autochthonous transgenic mouse models. We found that MYC elicited gene expression changes mostly in a tissue- and lineage-specific manner across B-cell lymphoma, T-cell acute lymphoblastic lymphoma, hepatocellular carcinoma, renal cell carcinoma, and lung adenocarcinoma. However, despite these gene expression changes being mostly tissue-specific, we uncovered a convergence on a common pattern of upregulation of embryonic stem cell gene programs and downregulation of tissue-of-origin gene programs across MYC-driven cancers. These changes are representative of lineage dedifferentiation, that may be facilitated by epigenetic alterations that occur during tumorigenesis. Moreover, while several cellular processes are represented among embryonic stem cell genes, ribosome biogenesis is most specifically associated with MYC expression in human primary cancers. Altogether, MYC's capability to drive tumorigenesis in diverse tissue types appears to be related to its ability to both drive a core signature of embryonic genes that includes ribosomal biogenesis genes as well as promote tissue and lineage specific dedifferentiation.


Assuntos
Genes myc , Neoplasias , Camundongos , Animais , Humanos , Regulação Neoplásica da Expressão Gênica , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Carcinogênese/genética , Transformação Celular Neoplásica/genética , Camundongos Transgênicos , Neoplasias/genética , Expressão Gênica
2.
ACS Med Chem Lett ; 13(4): 615-622, 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35450373

RESUMO

A natural compound screen identified several anticancer compounds, among which azapodophyllotoxin (AZP) was found to be the most potent. AZP caused decreased viability of both mouse and human lymphoma and renal cell cancer (RCC) tumor-derived cell lines. Novel AZP derivatives were synthesized and screened identifying compound NSC750212 to inhibit the growth of both lymphoma and RCC both in vitro and in vivo. A nanoimmunoassay was used to assess the NSC750212 mode of action in vivo. On the basis of the structure of AZP and its mode of action, AZP disrupts tubulin polymerization. Through desorption electrospray ionization mass spectrometry imaging, NSC750212 was found to inhibit lipid metabolism. NSC750212 suppresses monoglycerol metabolism depleting lipids and thereby inhibits tumor growth. The dual mode of tubulin polymerization disruption and monoglycerol metabolism inhibition makes NSC750212 a potent small molecule against lymphoma and RCC.

3.
Nat Rev Clin Oncol ; 19(1): 23-36, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34508258

RESUMO

The MYC proto-oncogenes encode a family of transcription factors that are among the most commonly activated oncoproteins in human neoplasias. Indeed, MYC aberrations or upregulation of MYC-related pathways by alternate mechanisms occur in the vast majority of cancers. MYC proteins are master regulators of cellular programmes. Thus, cancers with MYC activation elicit many of the hallmarks of cancer required for autonomous neoplastic growth. In preclinical models, MYC inactivation can result in sustained tumour regression, a phenomenon that has been attributed to oncogene addiction. Many therapeutic agents that directly target MYC are under development; however, to date, their clinical efficacy remains to be demonstrated. In the past few years, studies have demonstrated that MYC signalling can enable tumour cells to dysregulate their microenvironment and evade the host immune response. Herein, we discuss how MYC pathways not only dictate cancer cell pathophysiology but also suppress the host immune response against that cancer. We also propose that therapies targeting the MYC pathway will be key to reversing cancerous growth and restoring antitumour immune responses in patients with MYC-driven cancers.


Assuntos
Genes myc/genética , Evasão da Resposta Imune/genética , Neoplasias/genética , Oncogenes/genética , Humanos
4.
Foods ; 10(6)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200263

RESUMO

The disadvantageous properties of sago starch has limited its application in food and industrial processes. The properties of sago starch can be improved by changing its physicochemical and rheological characteristics. This study examined the influence of reaction time, acidity, and starch concentration on the oxidation of sago starch with ozone, a strong oxidant. Swelling, solubility, carbonyl, carboxyl, granule morphology, thermal profile, and functional groups are comprehensively observed parameters. With starch concentrations of 10-30% (v/w) and more prolonged oxidation, sago starch was most soluble at pH 10. The swelling power decreased with a longer reaction time, reaching the lowest pH 10. In contrast, the carbonyl and carboxyl content exhibited the same pattern as solubility. A more alkaline environment tended to create modified starch with more favorable properties. Over time, oxidation shows more significant characteristics, indicating a superb product of this reaction. At the starch concentration of 20%, modified sago starch with the most favorable properties was created. When compared to modified starch, native starch is generally shaped in a more oval and irregular manner. Additionally, native starch and modified starch had similar spectral patterns and identical X-ray diffraction patterns. Meanwhile, oxidized starch had different gelatinization and retrogradation temperatures to those of the native starch.

5.
Adv Exp Med Biol ; 1311: 161-172, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34014542

RESUMO

Cancer stem cells (CSCs), also known as tumorinitiating cells (TICs), are a group of cells found within cancer cells. Like normal stem cells, CSCs can proliferate, engage in self-renewal, and are often implicated in the recurrence of tumors after therapy [1, 2]. The existence of CSCs in various types of cancer has been proven, such as in acute myeloid leukemia (AML) [3], breast [4], pancreatic [5], and lung cancers [6], to name a few. There are two theories regarding the origin of CSCs. First, CSCs may have arisen from normal stem/progenitor cells that experienced changes in their environment or genetic mutations. On the other hand, CSCs may also have originated from differentiated cells that underwent genetic and/or heterotypic modifications [7]. Either way, CSCs reprogram their metabolism in order to support tumorigenesis.


Assuntos
Leucemia Mieloide Aguda , Neoplasias Pulmonares , Diferenciação Celular , Transformação Celular Neoplásica , Humanos , Leucemia Mieloide Aguda/genética , Células-Tronco Neoplásicas
6.
Data Brief ; 34: 106755, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33521182

RESUMO

The datasets here contain the 3D X-ray computed tomography (3DXCT) gray values and age models of coral cores Baler 2 and 3, taken from Baler, Aurora, Philippines. 3DXCT was used to analyze 5 mm-thick slabs of the coral cores. From the resulting 3DXCT images, gray values were determined per pixel from top to bottom of the slabs. The gray value profiles across the length of the slabs were then matched with records of sea surface temperature (SST) of the Baler site to construct the age model of the coral cores. Daily SST records from October 2018 to February 1982 were from the Optimum Interpolation Sea Surface Temperature or OISST [1,2], while monthly SST records from February 1982 to May 1945 were from the Extended Reconstructed Sea Surface Temperature or ERSST [3]. The gray value datasets of coral cores Baler 2 and 3 present historical records of the corals' response to changing environments through the years and may be used in studies related to such. An example of this can be seen in the relationship between coral gray values and SST. Furthermore, the age model datasets of Baler 2 and 3 serve as the basis for interpretation for all current and future studies on these coral cores. These datasets were originally produced for the research work titled "A historical record of the impact of nuclear activities based on 129I in coral cores in Baler, Philippines: an update" [4].

7.
J Environ Radioact ; 227: 106508, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33338867

RESUMO

In a previous study in 2016, we presented how 129I in coral cores from the east (Baler) and west (Parola) sides of the Philippines recorded the impacts of human nuclear activities, including nuclear weapons testing, nuclear fuel reprocessing, and nuclear accidents. However, the 2016 Baler dataset only had a two-year time resolution and a crude age model based on growth band counting. Here we present a new 2020 Baler 129I/127I atomic ratio dataset that features at least annual time resolution and a more accurate age model constructed using 3D X-ray Computed Tomography. Results show that the bomb peaks in Baler primarily came from the Pacific Proving Grounds or PPG with a time lag of about 1.8 years (or more specifically, between 1.3 and 2.4 years). Moreover, a review of the Parola dataset shows that PPG signals may have been transported to Parola in the West Philippine Sea via two pathways: the northward and southward bifurcations of the North Equatorial Current, reaching Parola about 4.5 and 8.5 years after detonation, respectively. Moreover, a prominent peak in the year 2014.7 in Baler possibly came from the 2011 Fukushima Accident, transported by the Kuroshio Recirculation Gyre and the North Pacific Mode Waters with a 3.5-year time lag. This study contributes to the understanding of the impact and transport of human-made radionuclides to the Philippines and the relevant oceanographic processes in the Western Equatorial Pacific region.


Assuntos
Antozoários , Acidente Nuclear de Fukushima , Radioisótopos do Iodo/análise , Monitoramento de Radiação , Poluentes Radioativos da Água , Animais , Humanos , Filipinas , Poluentes Radioativos da Água/análise
8.
Nat Biotechnol ; 39(3): 357-367, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33077961

RESUMO

Depletion of mitochondrial copper, which shifts metabolism from respiration to glycolysis and reduces energy production, is known to be effective against cancer types that depend on oxidative phosphorylation. However, existing copper chelators are too toxic or ineffective for cancer treatment. Here we develop a safe, mitochondria-targeted, copper-depleting nanoparticle (CDN) and test it against triple-negative breast cancer (TNBC). We show that CDNs decrease oxygen consumption and oxidative phosphorylation, cause a metabolic switch to glycolysis and reduce ATP production in TNBC cells. This energy deficiency, together with compromised mitochondrial membrane potential and elevated oxidative stress, results in apoptosis. CDNs should be less toxic than existing copper chelators because they favorably deprive copper in the mitochondria in cancer cells instead of systemic depletion. Indeed, we demonstrate low toxicity of CDNs in healthy mice. In three mouse models of TNBC, CDN administration inhibits tumor growth and substantially improves survival. The efficacy and safety of CDNs suggest the potential clinical relevance of this approach.


Assuntos
Cobre/metabolismo , Mitocôndrias/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Animais , Morte Celular , Linhagem Celular Tumoral , Quelantes/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Fosforilação Oxidativa , Neoplasias de Mama Triplo Negativas/metabolismo
9.
Cell Metab ; 30(3): 556-572.e5, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31447321

RESUMO

Lipid metabolism is frequently perturbed in cancers, but the underlying mechanism is unclear. We present comprehensive evidence that oncogene MYC, in collaboration with transcription factor sterol-regulated element-binding protein (SREBP1), regulates lipogenesis to promote tumorigenesis. We used human and mouse tumor-derived cell lines, tumor xenografts, and four conditional transgenic mouse models of MYC-induced tumors to show that MYC regulates lipogenesis genes, enzymes, and metabolites. We found that MYC induces SREBP1, and they collaborate to activate fatty acid (FA) synthesis and drive FA chain elongation from glucose and glutamine. Further, by employing desorption electrospray ionization mass spectrometry imaging (DESI-MSI), we observed in vivo lipidomic changes upon MYC induction across different cancers, for example, a global increase in glycerophosphoglycerols. After inhibition of FA synthesis, tumorigenesis was blocked, and tumors regressed in both xenograft and primary transgenic mouse models, revealing the vulnerability of MYC-induced tumors to the inhibition of lipogenesis.


Assuntos
Carcinogênese/genética , Lipogênese/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Animais , Linhagem Celular Tumoral , Ácidos Graxos/biossíntese , Feminino , Regulação Neoplásica da Expressão Gênica , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-myc/genética
10.
Cancer Res ; 79(16): 4015-4025, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31266772

RESUMO

Cancer stem cells (CSC) maintain both undifferentiated self-renewing CSCs and differentiated, non-self-renewing non-CSCs through cellular division. However, molecular mechanisms that maintain self-renewal in CSCs versus non-CSCs are not yet clear. Here, we report that in a transgenic mouse model of MYC-induced T-cell leukemia, MYC, maintains self-renewal in Sca1+ CSCs versus Sca-1- non-CSCs. MYC preferentially bound to the promoter and activated hypoxia-inducible factor-2α (HIF2α) in Sca-1+ cells only. Furthermore, the reprogramming factors, Nanog and Sox2, facilitated MYC regulation of HIF2α in Sca-1+ versus Sca-1- cells. Reduced expression of HIF2α inhibited the self-renewal of Sca-1+ cells; this effect was blocked through suppression of ROS by N-acetyl cysteine or the knockdown of p53, Nanog, or Sox2. Similar results were seen in ABCG2+ CSCs versus ABCG2- non-CSCs from primary human T-cell lymphoma. Thus, MYC maintains self-renewal exclusively in CSCs by selectively binding to the promoter and activating the HIF2α stemness pathway. Identification of this stemness pathway as a unique CSC determinant may have significant therapeutic implications. SIGNIFICANCE: These findings show that the HIF2α stemness pathway maintains leukemic stem cells downstream of MYC in human and mouse T-cell leukemias. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/79/16/4015/F1.large.jpg.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteína Homeobox Nanog/metabolismo , Células-Tronco Neoplásicas/patologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Proteínas Proto-Oncogênicas c-myc/genética , Fatores de Transcrição SOXB1/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Antígenos Ly/genética , Antígenos Ly/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos SCID , Camundongos Transgênicos , Proteína Homeobox Nanog/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-myc/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição SOXB1/genética , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Oncogene ; 37(40): 5435-5450, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29872221

RESUMO

Metabolic reprogramming is a prominent feature of clear cell renal cell carcinoma (ccRCC). Here we investigated metabolic dependencies in a panel of ccRCC cell lines using nutrient depletion, functional RNAi screening and inhibitor treatment. We found that ccRCC cells are highly sensitive to the depletion of glutamine or cystine, two amino acids required for glutathione (GSH) synthesis. Moreover, silencing of enzymes of the GSH biosynthesis pathway or glutathione peroxidases, which depend on GSH for the removal of cellular hydroperoxides, selectively reduced viability of ccRCC cells but did not affect the growth of non-malignant renal epithelial cells. Inhibition of GSH synthesis triggered ferroptosis, an iron-dependent form of cell death associated with enhanced lipid peroxidation. VHL is a major tumour suppressor in ccRCC and loss of VHL leads to stabilisation of hypoxia inducible factors HIF-1α and HIF-2α. Restoration of functional VHL via exogenous expression of pVHL reverted ccRCC cells to an oxidative metabolism and rendered them insensitive to the induction of ferroptosis. VHL reconstituted cells also exhibited reduced lipid storage and higher expression of genes associated with oxidiative phosphorylation and fatty acid metabolism. Importantly, inhibition of ß-oxidation or mitochondrial ATP-synthesis restored ferroptosis sensitivity in VHL reconstituted cells. We also found that inhibition of GSH synthesis blocked tumour growth in a MYC-dependent mouse model of renal cancer. Together, our data suggest that reduced fatty acid metabolism due to inhibition of ß-oxidation renders renal cancer cells highly dependent on the GSH/GPX pathway to prevent lipid peroxidation and ferroptotic cell death.


Assuntos
Carcinoma de Células Renais/patologia , Morte Celular , Glutationa/metabolismo , Neoplasias Renais/patologia , Metabolismo dos Lipídeos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Glutationa Peroxidase/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Peroxidação de Lipídeos , Oxirredução
12.
Proc Natl Acad Sci U S A ; 114(17): 4300-4305, 2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28400509

RESUMO

KRAS gene mutation causes lung adenocarcinoma. KRAS activation has been associated with altered glucose and glutamine metabolism. Here, we show that KRAS activates lipogenesis, and this activation results in distinct proteomic and lipid signatures. By gene expression analysis, KRAS is shown to be associated with a lipogenesis gene signature and specific induction of fatty acid synthase (FASN). Through desorption electrospray ionization MS imaging (DESI-MSI), specific changes in lipogenesis and specific lipids are identified. By the nanoimmunoassay (NIA), KRAS is found to activate the protein ERK2, whereas ERK1 activation is found in non-KRAS-associated human lung tumors. The inhibition of FASN by cerulenin, a small molecule antibiotic, blocked cellular proliferation of KRAS-associated lung cancer cells. Hence, KRAS is associated with activation of ERK2, induction of FASN, and promotion of lipogenesis. FASN may be a unique target for KRAS-associated lung adenocarcinoma remediation.


Assuntos
Adenocarcinoma/enzimologia , Ácido Graxo Sintases/metabolismo , Lipogênese , Neoplasias Pulmonares/enzimologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma de Pulmão , Ácido Graxo Sintases/genética , Humanos , Metabolismo dos Lipídeos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de Sinais
14.
Physiol Genomics ; 49(2): 88-95, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28011880

RESUMO

In several species caloric restriction (CR) extends life span. In this paper we integrate data from studies on CR and other sources to articulate the hypothalamic deregulation hypothesis by which estrogen receptor-alpha (ER-α) signaling in the hypothalamus and limbic system affects life span under the stress of CR in mammals. ER-α is one of two principal estrogen-binding receptors differentially expressed in the amygdala, hippocampus, and several key hypothalamic nuclei: the arcuate nucleus (ARN), preoptic area (POA), ventromedial nucleus (VMN), antero ventral periventricular nucleus (AVPV), paraventricular nucleus (PVN), supraoptic nucleus (SON), and suprachiasmatic nucleus (SCN). Estradiol signaling via ER-α is essential in basal level functioning of reproductive cycle, sexually receptive behaviors, physiological stress responses, as well as sleep cycle, and other nonsexual behaviors. When an organism is placed under long-term CR, which introduces an external stress to this ER-α signaling, the reduction of ER-α expression is attenuated over time in the hypothalamus. This review paper seeks to characterize the downstream effects of ER-α in the hypothalamus and limbic system that affect normal endocrine functioning.


Assuntos
Receptor alfa de Estrogênio/metabolismo , Hipotálamo/metabolismo , Longevidade , Modelos Biológicos , Animais , Humanos , Caracteres Sexuais , Estresse Fisiológico
15.
Science ; 352(6282): 227-31, 2016 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-26966191

RESUMO

The MYC oncogene codes for a transcription factor that is overexpressed in many human cancers. Here we show that MYC regulates the expression of two immune checkpoint proteins on the tumor cell surface: the innate immune regulator CD47 (cluster of differentiation 47) and the adaptive immune checkpoint PD-L1 (programmed death-ligand 1). Suppression of MYC in mouse tumors and human tumor cells caused a reduction in the levels of CD47 and PD-L1 messenger RNA and protein. MYC was found to bind directly to the promoters of the Cd47 and Pd-l1 genes. MYC inactivation in mouse tumors down-regulated CD47 and PD-L1 expression and enhanced the antitumor immune response. In contrast, when MYC was inactivated in tumors with enforced expression of CD47 or PD-L1, the immune response was suppressed, and tumors continued to grow. Thus, MYC appears to initiate and maintain tumorigenesis, in part, through the modulation of immune regulatory molecules.


Assuntos
Antígeno B7-H1/genética , Antígeno CD47/genética , Transformação Celular Neoplásica/imunologia , Regulação Neoplásica da Expressão Gênica , Tolerância Imunológica/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Regulação para Baixo , Técnicas de Silenciamento de Genes , Humanos , Células Jurkat , Linfoma/genética , Linfoma/imunologia , Camundongos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/imunologia , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-myc/genética , RNA Interferente Pequeno/genética
17.
Yale J Biol Med ; 88(4): 413-4, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26604866

RESUMO

Given the current funding situation of the National Institutes of Health, getting funding for rare disease research is extremely difficult. In light of the enormous potential for research in the rare diseases and the scarcity of research funding, we provide a case study of a novel successful crowdfunding approach at a non-profit organization called Rare Genomics Institute. We partner with biotechnology companies willing to donate their products, such as mouse models, gene editing software, and sequencing services, for which researchers can apply. First, we find that personal stories can be powerful tools to seek funding from sympathetic donors who do not have the same rational considerations of impact and profit. Second, for foundations facing funding restrictions, company donations can be a valuable tool in addition to crowdfunding. Third, rare disease research is particularly rewarding for scientists as they proceed to be pioneers in the field during their academic careers. Overall, by connecting donors, foundations, researchers, and patients, crowdfunding has become a powerful alternative funding mechanism for personalized medicine.


Assuntos
Pesquisa Biomédica/economia , Crowdsourcing , Medicina de Precisão , Apoio à Pesquisa como Assunto/métodos , Fundações , Humanos , Doenças Raras/genética
18.
Cell Metab ; 22(6): 1009-19, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26387865

RESUMO

The MYC oncogene encodes MYC, a transcription factor that binds the genome through sites termed E-boxes (5'-CACGTG-3'), which are identical to the binding sites of the heterodimeric CLOCK-BMAL1 master circadian transcription factor. Hence, we hypothesized that ectopic MYC expression perturbs the clock by deregulating E-box-driven components of the circadian network in cancer cells. We report here that deregulated expression of MYC or N-MYC disrupts the molecular clock in vitro by directly inducing REV-ERBα to dampen expression and oscillation of BMAL1, and this could be rescued by knockdown of REV-ERB. REV-ERBα expression predicts poor clinical outcome for N-MYC-driven human neuroblastomas that have diminished BMAL1 expression, and re-expression of ectopic BMAL1 in neuroblastoma cell lines suppresses their clonogenicity. Further, ectopic MYC profoundly alters oscillation of glucose metabolism and perturbs glutaminolysis. Our results demonstrate an unsuspected link between oncogenic transformation and circadian and metabolic dysrhythmia, which we surmise to be advantageous for cancer.


Assuntos
Fatores de Transcrição ARNTL/metabolismo , Proteínas CLOCK/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Transcrição ARNTL/química , Fatores de Transcrição ARNTL/genética , Sequência de Bases , Sítios de Ligação , Proteínas CLOCK/química , Proteínas CLOCK/genética , Linhagem Celular Tumoral , Ritmo Circadiano , Dimerização , Genes Reporter , Glucose/metabolismo , Glutamina/metabolismo , Humanos , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/antagonistas & inibidores , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-myc/genética , Interferência de RNA , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
19.
Proc Natl Acad Sci U S A ; 112(21): 6539-44, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25964345

RESUMO

The MYC oncogene is frequently mutated and overexpressed in human renal cell carcinoma (RCC). However, there have been no studies on the causative role of MYC or any other oncogene in the initiation or maintenance of kidney tumorigenesis. Here, we show through a conditional transgenic mouse model that the MYC oncogene, but not the RAS oncogene, initiates and maintains RCC. Desorption electrospray ionization-mass-spectrometric imaging was used to obtain chemical maps of metabolites and lipids in the mouse RCC samples. Gene expression analysis revealed that the mouse tumors mimicked human RCC. The data suggested that MYC-induced RCC up-regulated the glutaminolytic pathway instead of the glycolytic pathway. The pharmacologic inhibition of glutamine metabolism with bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide impeded MYC-mediated RCC tumor progression. Our studies demonstrate that MYC overexpression causes RCC and points to the inhibition of glutamine metabolism as a potential therapeutic approach for the treatment of this disease.


Assuntos
Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Genes myc , Glutamina/metabolismo , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Animais , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Progressão da Doença , Inibidores Enzimáticos/farmacologia , Genes ras , Glutaminase/antagonistas & inibidores , Glutaminase/metabolismo , Humanos , Neoplasias Renais/patologia , Metabolismo dos Lipídeos , Camundongos , Camundongos SCID , Camundongos Transgênicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Sulfetos/farmacologia , Tiadiazóis/farmacologia , Regulação para Cima
20.
J Clin Invest ; 125(6): 2293-306, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25915584

RESUMO

Glutaminase (GLS), which converts glutamine to glutamate, plays a key role in cancer cell metabolism, growth, and proliferation. GLS is being explored as a cancer therapeutic target, but whether GLS inhibitors affect cancer cell-autonomous growth or the host microenvironment or have off-target effects is unknown. Here, we report that loss of one copy of Gls blunted tumor progression in an immune-competent MYC-mediated mouse model of hepatocellular carcinoma. Compared with results in untreated animals with MYC-induced hepatocellular carcinoma, administration of the GLS-specific inhibitor bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide (BPTES) prolonged survival without any apparent toxicities. BPTES also inhibited growth of a MYC-dependent human B cell lymphoma cell line (P493) by blocking DNA replication, leading to cell death and fragmentation. In mice harboring P493 tumor xenografts, BPTES treatment inhibited tumor cell growth; however, P493 xenografts expressing a BPTES-resistant GLS mutant (GLS-K325A) or overexpressing GLS were not affected by BPTES treatment. Moreover, a customized Vivo-Morpholino that targets human GLS mRNA markedly inhibited P493 xenograft growth without affecting mouse Gls expression. Conversely, a Vivo-Morpholino directed at mouse Gls had no antitumor activity in vivo. Collectively, our studies demonstrate that GLS is required for tumorigenesis and support small molecule and genetic inhibition of GLS as potential approaches for targeting the tumor cell-autonomous dependence on GLS for cancer therapy.


Assuntos
Carcinoma Hepatocelular/enzimologia , Transformação Celular Neoplásica/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glutaminase/biossíntese , Neoplasias Hepáticas Experimentais/enzimologia , Substituição de Aminoácidos , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Glutaminase/antagonistas & inibidores , Glutaminase/genética , Xenoenxertos , Humanos , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Mutação de Sentido Incorreto , Transplante de Neoplasias , Sulfetos/farmacologia , Tiadiazóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...