Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 59(1): 294-312, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26645570

RESUMO

Selenosemicarbazones show marked antitumor activity. However, their mechanism of action remains unknown. We examined the medicinal chemistry of the selenosemicarbazone, 2-acetylpyridine 4,4-dimethyl-3-selenosemicarbazone (Ap44mSe), and its iron and copper complexes to elucidate its mechanisms of action. Ap44mSe demonstrated a pronounced improvement in selectivity toward neoplastic relative to normal cells compared to its parent thiosemicarbazone. It also effectively depleted cellular Fe, resulting in transferrin receptor-1 up-regulation, ferritin down-regulation, and increased expression of the potent metastasis suppressor, N-myc downstream regulated gene-1. Significantly, Ap44mSe limited deleterious methemoglobin formation, highlighting its usefulness in overcoming toxicities of clinically relevant thiosemicarbazones. Furthermore, Cu-Ap44mSe mediated intracellular reactive oxygen species generation, which was attenuated by the antioxidant, N-acetyl-L-cysteine, or Cu sequestration. Notably, Ap44mSe forms redox active Cu complexes that target the lysosome to induce lysosomal membrane permeabilization. This investigation highlights novel structure-activity relationships for future chemotherapeutic design and underlines the potential of Ap44mSe as a selective anticancer/antimetastatic agent.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Proteínas de Membrana Lisossomal/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Piridinas/síntese química , Piridinas/farmacologia , Semicarbazonas/síntese química , Semicarbazonas/farmacologia , Antioxidantes/farmacologia , Linhagem Celular Tumoral , Cristalografia por Raios X , Ferritinas/efeitos dos fármacos , Genes myc/efeitos dos fármacos , Humanos , Ferro/metabolismo , Quelantes de Ferro/farmacologia , Metemoglobina/metabolismo , Modelos Moleculares , Conformação Molecular , Permeabilidade , Espécies Reativas de Oxigênio/metabolismo , Receptores da Transferrina/efeitos dos fármacos , Relação Estrutura-Atividade
2.
J Biol Chem ; 290(15): 9588-603, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25720491

RESUMO

Multidrug resistance (MDR) is a major obstacle in cancer treatment. More than half of human cancers express multidrug-resistant P-glycoprotein (Pgp), which correlates with a poor prognosis. Intriguingly, through an unknown mechanism, some drugs have greater activity in drug-resistant tumor cells than their drug-sensitive counterparts. Herein, we investigate how the novel anti-tumor agent di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) overcomes MDR. Four different cell types were utilized to evaluate the effect of Pgp-potentiated lysosomal targeting of drugs to overcome MDR. To assess the mechanism of how Dp44mT overcomes drug resistance, cellular studies utilized Pgp inhibitors, Pgp silencing, lysosomotropic agents, proliferation assays, immunoblotting, a Pgp-ATPase activity assay, radiolabeled drug uptake/efflux, a rhodamine 123 retention assay, lysosomal membrane permeability assessment, and DCF (2',7'-dichlorofluorescin) redox studies. Anti-tumor activity and selectivity of Dp44mT in Pgp-expressing, MDR cells versus drug-sensitive cells were studied using a BALB/c nu/nu xenograft mouse model. We demonstrate that Dp44mT is transported by the lysosomal Pgp drug pump, causing lysosomal targeting of Dp44mT and resulting in enhanced cytotoxicity in MDR cells. Lysosomal Pgp and pH were shown to be crucial for increasing Dp44mT-mediated lysosomal damage and subsequent cytotoxicity in drug-resistant cells, with Dp44mT being demonstrated to be a Pgp substrate. Indeed, Pgp-dependent lysosomal damage and cytotoxicity of Dp44mT were abrogated by Pgp inhibitors, Pgp silencing, or increasing lysosomal pH using lysosomotropic bases. In vivo, Dp44mT potently targeted chemotherapy-resistant human Pgp-expressing xenografted tumors relative to non-Pgp-expressing tumors in mice. This study highlights a novel Pgp hijacking strategy of the unique dipyridylthiosemicarbazone series of thiosemicarbazones that overcome MDR via utilization of lysosomal Pgp transport activity.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Tiossemicarbazonas/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Antineoplásicos/farmacologia , Transporte Biológico/efeitos dos fármacos , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Feminino , Humanos , Lisossomos/metabolismo , Células MCF-7 , Camundongos Endogâmicos BALB C , Camundongos Nus , Microscopia de Fluorescência , Interferência de RNA , Tiossemicarbazonas/metabolismo , Vimblastina/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
3.
J Biol Chem ; 288(44): 31761-71, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24062304

RESUMO

Localization of the drug transporter P-glycoprotein (Pgp) to the plasma membrane is thought to be the only contributor of Pgp-mediated multidrug resistance (MDR). However, very little work has focused on the contribution of Pgp expressed in intracellular organelles to drug resistance. This investigation describes an additional mechanism for understanding how lysosomal Pgp contributes to MDR. These studies were performed using Pgp-expressing MDR cells and their non-resistant counterparts. Using confocal microscopy and lysosomal fractionation, we demonstrated that intracellular Pgp was localized to LAMP2-stained lysosomes. In Pgp-expressing cells, the Pgp substrate doxorubicin (DOX) became sequestered in LAMP2-stained lysosomes, but this was not observed in non-Pgp-expressing cells. Moreover, lysosomal Pgp was demonstrated to be functional because DOX accumulation in this organelle was prevented upon incubation with the established Pgp inhibitors valspodar or elacridar or by silencing Pgp expression with siRNA. Importantly, to elicit drug resistance via lysosomes, the cytotoxic chemotherapeutics (e.g. DOX, daunorubicin, or vinblastine) were required to be Pgp substrates and also ionized at lysosomal pH (pH 5), resulting in them being sequestered and trapped in lysosomes. This property was demonstrated using lysosomotropic weak bases (NH4Cl, chloroquine, or methylamine) that increased lysosomal pH and sensitized only Pgp-expressing cells to such cytotoxic drugs. Consequently, a lysosomal Pgp-mediated mechanism of MDR was not found for non-ionizable Pgp substrates (e.g. colchicine or paclitaxel) or ionizable non-Pgp substrates (e.g. cisplatin or carboplatin). Together, these studies reveal a new mechanism where Pgp-mediated lysosomal sequestration of chemotherapeutics leads to MDR that is amenable to therapeutic exploitation.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/biossíntese , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Proteínas de Membrana Lisossomal/metabolismo , Lisossomos/metabolismo , Proteínas de Neoplasias/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Humanos , Concentração de Íons de Hidrogênio , Proteína 2 de Membrana Associada ao Lisossomo , Proteínas de Membrana Lisossomal/genética , Lisossomos/genética , Proteínas de Neoplasias/genética
4.
Interdiscip Sci ; 5(4): 296-311, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24402823

RESUMO

Mycobacterium tuberculosis (Mtb) is a causative agent of tuberculosis (TB) disease, which has affected approximately 2 billion people worldwide. Due to the emergence of resistance towards the existing drugs, discovery of new anti-TB drugs is an important global healthcare challenge. To address this problem, there is an urgent need to identify new drug targets in Mtb. In the present study, the subtractive genomics approach has been employed for the identification of new drug targets against TB. Screening the Mtb proteome using the Database of Essential Genes (DEG) and human proteome resulted in the identification of 60 key proteins which have no eukaryotic counterparts. Critical analysis of these proteins using Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways database revealed uridine monophosphate kinase (UMPK) enzyme as a potential drug target for developing novel anti-TB drugs. Homology model of Mtb-UMPK was constructed for the first time on the basis of the crystal structure of E. coli-UMPK, in order to understand its structure-function relationships, and which would in turn facilitate to perform structure-based inhibitor design. Furthermore, the structural similarity search was carried out using physiological inhibitor UTP of Mtb-UMPK to virtually screen ZINC database. Retrieved hits were further screened by implementing several filters like ADME and toxicity followed by molecular docking. Finally, on the basis of the Glide docking score and the mode of binding, 6 putative leads were identified as inhibitors of this enzyme which can potentially emerge as future drugs for the treatment of TB.


Assuntos
Mycobacterium tuberculosis/enzimologia , Núcleosídeo-Fosfato Quinase/metabolismo , Tuberculose/enzimologia , Humanos
5.
Interdiscip Sci ; 4(3): 223-38, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23292696

RESUMO

The cell wall of mycobacterium offers well validated targets which can be exploited for discovery of new lead compounds. MurC-MurF ligases catalyze a series of irreversible steps in the biosynthesis of peptidoglycan precursor, i.e. MurD catalyzes the ligation of D-glutamate to the nucleotide precursor UMA. The three dimensional structure of Mtb-MurD is not known and was predicted by us for the first time using comparative homology modeling technique. The accuracy and stability of the predicted Mtb-MurD structure was validated using Procheck and molecular dynamics simulation. Key interactions in Mtb-MurD were studied using docking analysis of available transition state inhibitors of E.coli-MurD. The docking analysis revealed that analogues of both L and D forms of glutamic acid have similar interaction profiles with Mtb-MurD. Further, residues His192, Arg382, Ser463, and Tyr470 are proposed to be important for inhibitor-(Mtb-MurD) interactions. We also identified few pharmacophoric features essential for Mtb-MurD ligase inhibitory activity and which can further been utilized for the discovery of putative antitubercular chemotherapy.


Assuntos
Simulação de Dinâmica Molecular , Mycobacterium tuberculosis/enzimologia , Peptídeo Sintases/antagonistas & inibidores , Peptídeo Sintases/metabolismo , Sequência de Aminoácidos , Ácido Glutâmico/metabolismo , Dados de Sequência Molecular , Peptídeo Sintases/química , Homologia de Sequência de Aminoácidos
6.
Free Radic Biol Med ; 51(8): 1558-66, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21787861

RESUMO

It is well established that nitric oxide ((•)NO) reacts with cellular iron and thiols to form dinitrosyliron complexes (DNIC). Little is known, however, regarding their formation and biological fate. Our quantitative measurements reveal that cellular concentrations of DNIC are proportionally the largest of all (•)NO-derived adducts (900 pmol/mg protein, or 45-90 µM). Using murine macrophages (RAW 264.7), we measured the amounts, and kinetics, of DNIC assembly and disappearance from endogenous and exogenous sources of (•)NO in relation to iron and O(2) concentration. Amounts of DNIC were equal to or greater than measured amounts of chelatable iron and depended on the dose and duration of (•)NO exposure. DNIC formation paralleled the upregulation of iNOS and occurred at low physiologic (•)NO concentrations (50-500 nM). Decreasing the O(2) concentration reduced the rate of enzymatic (•)NO synthesis without affecting the amount of DNIC formed. Temporal measurements revealed that DNIC disappeared in an oxygen-independent manner (t(1/2)=80 min) and remained detectable long after the (•)NO source was removed (>24 h). These results demonstrate that DNIC will be formed under all cellular settings of (•)NO production and that the contribution of DNIC to the multitude of observed effects of (•)NO must always be considered.


Assuntos
Ferro/metabolismo , Macrófagos/metabolismo , Óxido Nítrico/metabolismo , Óxidos de Nitrogênio/metabolismo , Oxigênio/química , Espécies Reativas de Nitrogênio/metabolismo , Animais , Linhagem Celular , Espectroscopia de Ressonância de Spin Eletrônica , Ferro/química , Macrófagos/patologia , Camundongos , Óxido Nítrico/química , Óxidos de Nitrogênio/química , Espécies Reativas de Nitrogênio/química
7.
Chem Biol Drug Des ; 77(5): 373-87, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21284830

RESUMO

CCR3, a G protein-coupled receptor, plays a central role in allergic inflammation and is an important drug target for inflammatory diseases. To understand the structure-function relationship of CCR3 receptor, different computational techniques were employed, which mainly include: (i) homology modeling of CCR3 receptor, (ii) 3D-quantitative pharmacophore model of CCR3 antagonists, (iii) virtual screening of small compound databases, and (iv) finally, molecular docking at the binding site of the CCR3 receptor homology model. Pharmacophore model was developed for the first time, on a training data set of 22 CCR3 antagonists, using CATALYST HypoRefine program. Best hypothesis (Hypo1) has three different chemical features: two hydrogen-bond acceptors, one hydrophobic, and one ring aromatic. Hypo1 model was further validated using (i) 87 test set CCR3 antagonists, (ii) Cat Scramble randomization technique, and (iii) Decoy data set. Molecular docking studies were performed on modeled CCR3 receptor using 303 virtually screened hits, obtained from small compound database virtual screening. Finally, five hits were identified as potential leads against CCR3 receptor, which exhibited good estimated activities, favorable binding interactions, and high docking scores. These studies provided useful information on the structurally vital residues of CCR3 receptor involved in the antagonist binding, and their unexplored potential for the future development of potent CCR3 receptor antagonists.


Assuntos
Receptores CCR3/antagonistas & inibidores , Receptores CCR3/química , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Células CHO , Bovinos , Quimiocina CCL11/química , Quimiocina CCL11/metabolismo , Quimiocina CCL11/farmacologia , Cricetinae , Cricetulus , Bases de Dados Factuais , Ensaios de Triagem em Larga Escala , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Hipersensibilidade/tratamento farmacológico , Inflamação/tratamento farmacológico , Modelos Moleculares , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Ligação Proteica/efeitos dos fármacos , Receptores CCR3/metabolismo , Rodopsina/química , Rodopsina/metabolismo , Alinhamento de Sequência , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade
8.
J Mol Model ; 17(5): 939-53, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-20614148

RESUMO

Despite the availability of effective chemotherapy and a moderately protective vaccine, new anti-tuberculosis agents are urgently needed to decrease the global incidence of tuberculosis (TB) disease. The MurB gene belongs to the bacterial cell wall biosynthesis pathway and is an essential drug target in Mycobacterium tuberculosis (Mtb) that has no mammalian counterparts. Here, we present an integrated approach involving homology modeling, molecular dynamics and molecular docking studies on Mtb-MurB oxidoreductase enzyme. A homology model of Mtb-MurB enzyme was built for the first time in order to carry out structure-based inhibitor design. The accuracy of the model was validated using different techniques. The molecular docking study on this enzyme was undertaken using different classes of well known MurB inhibitors. Estimation of binding free energy by docking analysis indicated the importance of Tyr155, Arg156, Ser237, Asn241 and His304 residues within the Mtb-MurB binding pocket. Our computational analysis is in good agreement with experimental results of site-directed mutagenesis. The present study should therefore play a guiding role in the experimental design of Mtb-MurB inhibitors for in vitro/in vivo analysis.


Assuntos
Aminoácidos/química , Proteínas de Bactérias/química , Sítios de Ligação , Desidrogenases de Carboidrato/antagonistas & inibidores , Desidrogenases de Carboidrato/química , Inibidores Enzimáticos/química , Mycobacterium tuberculosis , Sequência de Aminoácidos , Aminoácidos/genética , Aminoácidos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Desidrogenases de Carboidrato/metabolismo , Cristalografia por Raios X , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Escherichia coli , Humanos , Modelos Químicos , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Ligação Proteica , Homologia de Sequência de Aminoácidos , Staphylococcus aureus , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Uridina Difosfato N-Acetilglicosamina/análogos & derivados , Uridina Difosfato N-Acetilglicosamina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...