Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-503706

RESUMO

The appearance of new dominant variants of concern (VOCs) of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) threatens the global response to the COVID-19 pandemic. Of these, the alpha variant (also known as B.1.1.7) that appeared initially in the UK became the dominant variant in much of Europe and North America in the first half of 2021. The Spike (S) glycoprotein of alpha acquired seven mutations and two deletions compared to the ancestral virus, including the P681H mutation in the polybasic cleavage site that has been suggested to enhance S cleavage. Here, we show that the alpha S protein confers a level of resistance to the effects of interferon-{beta} (IFN{beta}) in human lung epithelial cells. This correlates with resistance to an entry restriction mediated by interferon-induced transmembrane protein 2 (IFITM2) and a pronounced infection enhancement by IFITM3. Furthermore, the P681H mutation is essential for resistance to IFN{beta} and context-dependent resistance to IFITMs in the alpha S. However, while this appears to confer changes in sensitivity to endosomal protease inhibition consistent with enhanced cell-surface entry, its reversion does not reduce cleaved S incorporation into particles, indicating a role downstream of furin cleavage. Overall, we suggest that, in addition to adaptive immune escape, mutations associated with VOCs may well also confer replication and/or transmission advantage through adaptation to resist innate immune mechanisms. IMPORTANCEThe emergence of Variants of Concern of SARS-CoV-2 has been a key challenge in the global response to the COVID-19 pandemic. Accumulating evidence suggests VOCs are being selected to evade the human immune response, with much interest focussed on mutations in the Spike protein that escape from neutralizing antibody responses. However, resistance to the innate immune response is essential for efficient viral replication and transmission. Here we show that the alpha (B.1.1.7) VOC of SARS-CoV-2 is substantially more resistant to type-1 interferons than the parental Wuhan-like virus. This correlates with resistance to the antiviral protein IFITM2, and enhancement by its paralogue IFITM3, that block virus entry into target cells. The key determinant of this is a proline to histidine change at position 681 in S adjacent to the furin-cleavage site that we have shown previously modulates IFITM2 sensitivity. Unlike other VOCs, in the context of the alpha spike, P681H modulates cell entry pathways of SARS-CoV-2, further reducing its dependence one endosomal proteases. Reversion of position 681 to a proline in viruses bearing the alpha spike is sufficient to restore interferon and IFITM2 sensitivity without reducing furin-mediated spike cleavage, suggesting post cleavage conformational changes in S are changing the viral entry pathway and therefore sensitivity to interferon. These data highlight the dynamic nature of the SARS CoV-2 S as it adapts to both innate and adaptive immunity in the human population.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-499603

RESUMO

SARS-CoV-2 adaptation to its human host is evidenced by the emergence of new viral lineages with distinct genotypic and phenotypic characteristics, termed variants of concern (VOCs). Particular VOCs have become sequentially dominant globally (Alpha, Delta, Omicron) with each evolving independently from the ancestral Wuhan strain. Omicron is notable for its large number of spike mutations1 found to promote immune escape and re-infection2. Most recently, Omicron BA.4 and BA.5 subvariants have emerged with increasing levels of adaptive immune escape threatening vaccine effectiveness and increasing hospitalisations1,3-12. Here, we demonstrate that the most recent Omicron variants have enhanced capacity to antagonise or evade human innate immune defenses. We find Omicron BA.4 and BA.5 replication is associated with reduced activation of epithelial innate immune responses versus earlier BA.1 and BA.2 subvariants. We also find enhanced expression of innate immune antagonist proteins Orf6 and N, similar to Alpha, suggesting common pathways of human adaptation and linking VOC dominance to improved innate immune evasion. We conclude that Omicron BA.4 and BA.5 have combined evolution of antibody escape with enhanced antagonism of human innate immunity to improve transmission and possibly reduce immune protection from severe disease.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-474653

RESUMO

The SARS-CoV-2 Omicron/BA.1 lineage emerged in late 2021 and rapidly displaced the Delta variant before being overtaken itself globally by, the Omicron/BA.2 lineage in early 2022. Here, we describe how Omicron BA.1 and BA.2 show a lower severity phenotype in a hamster model of pathogenicity which maps specifically to the spike gene. We further show that Omicron is attenuated in a lung cell line but replicates more rapidly, albeit to lower peak titres, in human primary nasal cells. This replication phenotype also maps to the spike gene. Omicron spike (including the emerging Omicron lineage BA.4) shows attenuated fusogenicity and a preference for cell entry via the endosomal route. We map the altered Omicron spike entry route and partially map the lower fusogenicity to the S2 domain, particularly the substitution N969K. Finally, we show that pseudovirus with Omicron spike, engineered in the S2 domain to confer a more Delta-like cell entry route retains the antigenic properties of Omicron. This shows a distinct separation between the genetic determinants of these two key Omicron phenotypes, raising the concerning possibility that future variants with large antigenic distance from currently circulating and vaccine strains will not necessarily display the lower intrinsic severity seen during Omicron infection.

4.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-467693

RESUMO

Variants of concern (VOCs) of severe acute respiratory syndrome coronavirus type-2 (SARS-CoV-2) threaten the global response to the COVID-19 pandemic. The alpha (B.1.1.7) variant appeared in the UK became dominant in Europe and North America in early 2021. The Spike glycoprotein of alpha has acquired a number mutations including the P681H mutation in the polybasic cleavage site that has been suggested to enhance Spike cleavage. Here, we show that the alpha Spike protein confers a level of resistance to the effects of interferon-{beta} (IFN{beta}) in lung epithelial cells. This correlates with resistance to restriction mediated by interferon-induced transmembrane protein-2 (IFITM2) and a pronounced infection enhancement by IFITM3. Furthermore, the P681H mutation is necessary for comparative resistance to IFN{beta} in a molecularly cloned SARS-CoV-2 encoding alpha Spike. Overall, we suggest that in addition to adaptive immune escape, mutations associated with VOCs also confer replication advantage through adaptation to resist innate immunity.

5.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-456972

RESUMO

SARS-CoV-2 has a broad mammalian species tropism infecting humans, cats, dogs and farmed mink. Since the start of the 2019 pandemic several reverse zoonotic outbreaks of SARS-CoV-2 have occurred in mink, one of which reinfected humans and caused a cluster of infections in Denmark. Here we investigate the molecular basis of mink and ferret adaptation and demonstrate the spike mutations Y453F, F486L, and N501T all specifically adapt SARS-CoV-2 to use mustelid ACE2. Furthermore, we risk assess these mutations and conclude mink-adapted viruses are unlikely to pose an increased threat to humans, as Y453F attenuates the virus replication in human cells and all 3 mink-adaptations have minimal antigenic impact. Finally, we show that certain SARS-CoV-2 variants emerging from circulation in humans may naturally have a greater propensity to infect mustelid hosts and therefore these species should continue to be surveyed for reverse zoonotic infections.

6.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21259327

RESUMO

Vaccines are proving to be highly effective in controlling hospitalisation and deaths associated with SARS-CoV-2 infection but the emergence of viral variants with novel antigenic profiles threatens to diminish their efficacy. Assessment of the ability of sera from vaccine recipients to neutralise SARS-CoV-2 variants will inform the success of strategies for minimising COVID19 cases and the design of effective antigenic formulations. Here, we examine the sensitivity of variants of concern (VOCs) representative of the B.1.617.1 and B.1.617.2 (first associated with infections in India) and B.1.351 (first associated with infection in South Africa) lineages of SARS-CoV-2 to neutralisation by sera from individuals vaccinated with the BNT162b2 (Pfizer/BioNTech) and ChAdOx1 (Oxford/AstraZeneca) vaccines. Across all vaccinated individuals, the spike glycoproteins from B.1.617.1 and B.1.617.2 conferred reductions in neutralisation of 4.31 and 5.11-fold respectively. The reduction seen with the B.1.617.2 lineage approached that conferred by the glycoprotein from B.1.351 (South African) variant (6.29-fold reduction) that is known to be associated with reduced vaccine efficacy. Neutralising antibody titres elicited by vaccination with two doses of BNT162b2 were significantly higher than those elicited by vaccination with two doses of ChAdOx1. Fold decreases in the magnitude of neutralisation titre following two doses of BNT162b2, conferred reductions in titre of 7.77, 11.30 and 9.56-fold respectively to B.1.617.1, B.1.617.2 and B.1.351 pseudoviruses, the reduction in neutralisation of the delta variant B.1.617.2 surpassing that of B.1.351. Fold changes in those vaccinated with two doses of ChAdOx1 were 0.69, 4.01 and 1.48 respectively. The accumulation of mutations in these VOCs, and others, demonstrate the quantifiable risk of antigenic drift and subsequent reduction in vaccine efficacy. Accordingly, booster vaccines based on updated variants are likely to be required over time to prevent productive infection. This study also suggests that two dose regimes of vaccine are required for maximal BNT162b2 and ChAdOx1-induced immunity.

7.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-429199

RESUMO

Remdesivir (RDV) is used widely for COVID-19 patients despite varying results in recent clinical trials. Here, we show how serially passaging SARS-CoV-2 in vitro in the presence of RDV selected for drug-resistant viral populations. We determined that the E802D mutation in the RNA-dependent RNA polymerase was sufficient to confer decreased RDV sensitivity without affecting viral fitness. Analysis of more than 200,000 sequences of globally circulating SARS-CoV-2 variants show no evidence of widespread transmission of RDV-resistant mutants. Surprisingly, we also observed changes in the Spike (i.e., H69 E484, N501, H655) corresponding to mutations identified in emerging SARS-CoV-2 variants indicating that they can arise in vitro in the absence of immune selection. This study illustrates SARS-CoV-2 genome plasticity and offers new perspectives on surveillance of viral variants. One Sentence SummarySARS-CoV-2 drug resistance & genome plasticity

8.
Protein & Cell ; (12): 664-674, 2010.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-757422

RESUMO

Mannan-binding lectin (MBL) is a soluble innate immune protein that binds to glycosylated targets. MBL acts as an opsonin and activates complement, contributing to the destruction and clearance of infecting microorganisms. Hepatitis C virus (HCV) encodes two envelope glycoproteins E1 and E2, expressed as non-covalent E1/E2 heterodimers in the viral envelope. E1 and E2 are potential ligands for MBL. Here we describe an analysis of the interaction between HCV and MBL using recombinant soluble E2 ectodomain fragment, the full-length E1/E2 heterodimer, expressed in vitro, and assess the effect of this interaction on virus entry. A binding assay using antibody capture of full length E1/E2 heterodimers was used to demonstrate calcium dependent, saturating binding of MBL to HCV glycoproteins. Competition with various saccharides further confirmed that the interaction was via the lectin domain of MBL. MBL binds to E1/E2 representing a broad range of virus genotypes. MBL was shown to neutralize the entry into Huh-7 cells of HCV pseudoparticles (HCVpp) bearing E1/E2 from a wide range of genotypes. HCVpp were neutralized to varying degrees. MBL was also shown to neutralize an authentic cell culture infectious virus, strain JFH-1 (HCVcc). Furthermore, binding of MBL to E1/E2 was able to activate the complement system via MBL-associated serine protease 2. In conclusion, MBL interacts directly with HCV glycoproteins, which are present on the surface of the virion, resulting in neutralization of HCV particles.


Assuntos
Humanos , Ligação Competitiva , Glicosilação , Hepacivirus , Genética , Virulência , Fisiologia , Lectina de Ligação a Manose , Metabolismo , Serina Proteases Associadas a Proteína de Ligação a Manose , Metabolismo , Monossacarídeos , Metabolismo , Ligação Proteica , Multimerização Proteica , Células Tumorais Cultivadas , Proteínas do Envelope Viral , Metabolismo , Vírion , Virulência , Fisiologia , Internalização do Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA