Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Food Sci Technol ; 54(7): 2115-2125, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28720969

RESUMO

The study quantified the major phenolics in different fractions of Syzygium cumini seeds and evaluated their cardioprotective efficacy. Gallic acid, ellagic acid, cinnamic acid, quercetin, syringic acid and ferulic acid were the major polyphenols present in different fractions of Syzygium cumini seeds. The cardioprotective effect of Syzygium cumini seed fractions in modulating angiotensin converting enzyme (ACE), HMG-CoA reductase, LDL oxidation and tertiary butyl hydrogen peroxide (TBHP) induced oxidative stress in H9c2 cardiac cell lines were investigated. Syzygium cumini effectively attenuated the cellular oxidative stress in H9c2 cardiomyoblasts. These fractions possessed inhibitory potential against ACE, HMG-CoA reductase and LDL oxidation. Molecular docking studies of the predominant polyphenols with ACE and HMG-CoA proteins revealed the binding interactions of these compounds, thus confirming their modulation of activity. The present study demonstrated the cardioprotective efficacy of Syzygium cumini seed fractions which can be attributed to the presence of phenolic acids and flavonoids.

2.
Front Pharmacol ; 8: 336, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28642704

RESUMO

Herein we investigated the molecular mechanism of action of the citrus flavonoid, quercetin in skeletal muscle cells (L6 myotubes). Taking advantage of protein kinase inhibitors, we proved that the effect of quercetin on 2-NBDG uptake in L6 myotubes was not through insulin signaling pathway, but through adenosine monophosphate kinase (AMPK) pathway and its downstream target p38 MAPK. An increase in the cellular AMP to ATP ratio on pretreatment may account for AMPK activation which was coupled with a transient change in mitochondrial membrane potential. In addition, quercetin triggered a rise in intracellular calcium suggesting that calcium-calmodulin mediated protein kinase (CaMKK) may also be involved. Quercetin shared a similar mechanism with the well-known drug metformin, highlighting it as a promising compound for the management of type 2 diabetes. The AMPK signaling pathway could contribute to correction of insulin resistance through bypassing the insulin-regulated system for GLUT4 translocation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...