Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 14(12)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204312

RESUMO

In this study, an investigation of the shear behavior of full-scale reinforced concrete (RC) beams affected from alkali-silica reactivity damage is presented. A detailed finite element model (FEM) was developed and validated with data obtained from the experiments using several metrics, including a force-deformation curve, rebar strains, and crack maps and width. The validated FEM was used in a parametric study to investigate the potential impact of alkali-silica reactivity (ASR) degradation on the shear capacity of the beam. Degradations of concrete mechanical properties were correlated with ASR expansion using material test data and implemented in the FEM for different expansions. The finite element (FE) analysis provided a better understanding of the failure mechanism of ASR-affected RC beam and degradation in the capacity as a function of the ASR expansion. The parametric study using the FEM showed 6%, 19%, and 25% reduction in the shear capacity of the beam, respectively, affected from 0.2%, 0.4%, and 0.6% of ASR-induced expansion.

2.
Materials (Basel) ; 14(6)2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33804624

RESUMO

The lateral capacity of exterior concrete columns subjected to a blast load is the key factor in the building collapse probability. Due to potentially severe consequences of the collapse, efforts have been made to improve the blast resistance of existing structures. One of the successful approaches is the use of ultra-high-performance-concrete (UHPC) jacketing for retrofitting a building's columns. The columns on the first floor of a building normally have higher slenderness due to the higher first story. Since an explosion is more likely to take place at the ground level, retrofitting the columns of the lower floors is crucial to improve a building's blast resistance. Casting a UHPC tube around a circular RC column can increase the moment of inertia of the column and improve the flexural strength. In this study, a retrofitting system consisting of a UHPC layer enclosed by a thin steel jacket is proposed to improve the blast resistance of buildings in service. Most of the previous research is focused on design aspects of blast-resistant columns and retrofitting systems are mostly based on fiber reinforced polymers or steel jackets. A validated FE model is used to investigate the effectiveness of this method. The results showed significant improvement both at the component and building system levels against combined gravity and blast loading.

3.
Materials (Basel) ; 13(15)2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32717936

RESUMO

This study focuses on two separate investigations of the main aging mechanisms: alkali-silica reactivity (ASR) and the corrosion of reinforcing steel (rebar) concrete, both of which may result in a premature failure to meet the serviceability or strength requirements of a concrete structure. However, these processes occur very slowly, spanning decades. The impact of direct chemical additives to fresh concrete to accelerate ASR and the corrosion of reinforcing steel on the fresh and hardened properties of the ensuing material are investigated to inform the potential use of chemicals in large-scale studies. The deterioration of reinforced concrete (RC) is determined by means of expansion, cracking, bulk diffusivity and surface resistivity measurements, and compressive, split tensile and flexural strength tests. The results indicate that the addition of sodium hydroxide and calcium chloride can effectively accelerate the crack formation and propagation in concrete due to ASR and the corrosion of rebar, respectively. The ASR-induced cracks maintained a constant crack width from 0.05 mm to 0.1 mm over the measurement period regardless of the intensity of aging acceleration. Adding 4% chloride by weight of cement for accelerating rebar corrosion resulted in an average crack that was 82% larger than in the case of ASR accelerated with the addition of sodium hydroxide. The addition of alkali resulted in an increase in early-age (7-day) strength. At a total alkali loading of 2.98 kg/m3, 3.84 kg/m3 and 5.57 kg/m3, the 28-day compressive strength of concrete decreased by 3%, 10% and 24%, respectively. Similarly, a higher early-age strength and a lower later-age strength was observed for the concrete in the presence of corrosive calcium chloride. The results from this research are expected to inform future studies on the long-term performance of RC structures under accelerated ASR and corrosion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...