Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Opin Neurobiol ; 84: 102832, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38141414

RESUMO

Chronic stress (CS) can have long-lasting consequences on behavior and cognition, that are associated with stable changes in gene expression in the brain. Recent work has examined the role of the epigenome in the effects of CS on the brain. This review summarizes experimental evidence in rodents showing that CS can alter the epigenome and the expression of epigenetic modifiers in brain cells, and critically assesses their functional effect on genome function. It discusses the influence of the developmental time of stress exposure on the type of epigenetic changes, and proposes new lines of research that can help clarify these changes and their causal involvement in the impact of CS.


Assuntos
Metilação de DNA , Epigenoma , Epigênese Genética , Encéfalo , Genoma
2.
Transl Psychiatry ; 13(1): 122, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37041131

RESUMO

Chromatin is the physical substrate of the genome that carries the DNA sequence and ensures its proper functions and regulation in the cell nucleus. While a lot is known about the dynamics of chromatin during programmed cellular processes such as development, the role of chromatin in experience-dependent functions remains not well defined. Accumulating evidence suggests that in brain cells, environmental stimuli can trigger long-lasting changes in chromatin structure and tri-dimensional (3D) organization that can influence future transcriptional programs. This review describes recent findings suggesting that chromatin plays an important role in cellular memory, particularly in the maintenance of traces of prior activity in the brain. Inspired by findings in immune and epithelial cells, we discuss the underlying mechanisms and the implications for experience-dependent transcriptional regulation in health and disease. We conclude by presenting a holistic view of chromatin as potential molecular substrate for the integration and assimilation of environmental information that may constitute a conceptual basis for future research.


Assuntos
Cromatina , Cromossomos , Núcleo Celular , Genoma , Encéfalo
3.
Environ Epigenet ; 8(1): dvac021, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36589550

RESUMO

Epigenetic inheritance has emerged as a new research discipline that aims to study the mechanisms underlying the transmission of acquired traits across generations. Such transmission is well established in plants and invertebrates but remains not well characterized and understood in mammals. Important questions are how life experiences and environmental factors induce phenotypic changes that are passed to the offspring of exposed individuals, sometimes across several successive generations, what is the contribution of germ cells and what are the consequences for health and disease. These questions were recently discussed at the symposium Epigenetic Inheritance: Impact for Biology and Society organized every 2 years in Zürich, Switzerland. This review provides a summary of the research presented during the symposium and discusses current important questions, perspectives and challenges for the field in the future.

4.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34385324

RESUMO

As phosphorus is one of the most limiting nutrients in many natural and agricultural ecosystems, plants have evolved strategies that cope with its scarcity. Genetic approaches have facilitated the identification of several molecular elements that regulate the phosphate (Pi) starvation response (PSR) of plants, including the master regulator of the transcriptional response to phosphate starvation PHOSPHATE STARVATION RESPONSE1 (PHR1). However, the chromatin modifications underlying the plant transcriptional response to phosphate scarcity remain largely unknown. Here, we present a detailed analysis of changes in chromatin accessibility during phosphate starvation in Arabidopsis thaliana root cells. Root cells undergo a genome-wide remodeling of chromatin accessibility in response to Pi starvation that is often associated with changes in the transcription of neighboring genes. Analysis of chromatin accessibility in the phr1 phl2 double mutant revealed that the transcription factors PHR1 and PHL2 play a key role in remodeling chromatin accessibility in response to Pi limitation. We also discovered that PHR1 and PHL2 play an important role in determining chromatin accessibility and the associated transcription of many genes under optimal Pi conditions, including genes involved in the PSR. We propose that a set of transcription factors directly activated by PHR1 in Pi-starved root cells trigger a second wave of epigenetic changes required for the transcriptional activation of the complete set of low-Pi-responsive genes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genoma de Planta , Fosfatos/administração & dosagem , Fosfatos/farmacologia , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cromatina/metabolismo , Fosfatos/metabolismo , Raízes de Plantas/citologia , Fatores de Transcrição/genética
5.
Genome Biol ; 22(1): 162, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34099014

RESUMO

BACKGROUND: Circadian gene expression is essential for organisms to adjust their physiology and anticipate daily changes in the environment. The molecular mechanisms controlling circadian gene transcription are still under investigation. In particular, how chromatin conformation at different genomic scales and regulatory elements impact rhythmic gene expression has been poorly characterized. RESULTS: Here we measure changes in the spatial chromatin conformation in mouse liver using genome-wide and promoter-capture Hi-C alongside daily oscillations in gene transcription. We find topologically associating domains harboring circadian genes that switch assignments between the transcriptionally active and inactive compartment at different hours of the day, while their boundaries stably maintain their structure over time. To study chromatin contacts of promoters at high resolution over time, we apply promoter capture Hi-C. We find circadian gene promoters displayed a maximal number of chromatin contacts at the time of their peak transcriptional output. Furthermore, circadian genes, as well as contacted and transcribed regulatory elements, reach maximal expression at the same timepoints. Anchor sites of circadian gene promoter loops are enriched in DNA binding sites for liver nuclear receptors and other transcription factors, some exclusively present in either rhythmic or stable contacts. Finally, by comparing the interaction profiles between core clock and output circadian genes, we show that core clock interactomes are more dynamic compared to output circadian genes. CONCLUSION: Our results identify chromatin conformation dynamics at different scales that parallel oscillatory gene expression and characterize the repertoire of regulatory elements that control circadian gene transcription through rhythmic or stable chromatin configurations.


Assuntos
Ritmo Circadiano/genética , Genoma , Regiões Promotoras Genéticas , Animais , Sequência de Bases , Relógios Biológicos/genética , Cromatina/metabolismo , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Modelos Genéticos , Fatores de Tempo , Transcrição Gênica
6.
Front Genet ; 11: 589621, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193727

RESUMO

Prolonged periods of social isolation can have detrimental effects on the physiology and behavior of exposed individuals in humans and animal models. This involves complex molecular mechanisms across tissues in the body which remain partly identified. This review discusses the biology of social isolation and describes the acute and lasting effects of prolonged periods of social isolation with a focus on the molecular events leading to behavioral alterations. We highlight the role of epigenetic mechanisms and non-coding RNA in the control of gene expression as a response to social isolation, and the consequences for behavior. Considering the use of strict quarantine during epidemics, like currently with COVID-19, we provide a cautionary tale on the indiscriminate implementation of such form of social isolation and its potential damaging and lasting effects in mental health.

7.
Front Genet ; 11: 928, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33061937

RESUMO

Alu elements are primate-specific repeats and represent the most abundant type of transposable elements (TE) in the human genome. Genome-wide analysis of the enrichment of histone post-translational modifications suggests that human Alu sequences could function as transcriptional enhancers; however, no functional experiments have evaluated the role of Alu sequences in the control of transcription in situ. The present study analyses the regulatory activity of a human Alu sequence from the AluSx family located in the second intron of the long intergenic non-coding RNA Linc00441, found in divergent orientation to the RB1 gene. We observed that the Alu sequence acts as an enhancer element based on reporter gene assays while CRISPR-Cas9 deletions of the Alu sequence in K562 cells resulted in a marked transcriptional upregulation of Linc00441 and a decrease in proliferation. Our results suggest that an intragenic Alu sequence with enhancer activity can act as a transcriptional attenuator of its host lincRNA.

8.
Insect Biochem Mol Biol ; 122: 103412, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32417415

RESUMO

Anastrepha ludens is a major pest of fruits including citrus and mangoes in Mexico and Central America with major economic and social impacts. Despite its importance, our knowledge on its embryonic development is scarce. Here, we report the first cytological study of embryonic development in A. ludens and provide a transcriptional landscape during key embryonic stages. We established 17 stages of A. ludens embryogenesis that closely resemble the morphological events observed in Drosophila. In addition to the extended duration of embryonic development, we observed notable differences including yolk extrusion at both poles of the embryo, distinct nuclear division waves in the syncytial blastoderm and a heterochronic change during the involution of the head. Characterization of the transcriptional dynamics during syncytial blastoderm, cellular blastoderm and gastrulation, showed that approximately 9000 different transcripts are present at each stage. Even though we identified most of the transcripts with a role during embryonic development present in Drosophila, including sex determination genes, a number of transcripts were absent not only in A. ludens but in other tephritids such as Ceratitis capitata and Bactrocera dorsalis. Intriguingly, some A. ludens embryo transcripts encode proteins present in other organisms but not in other flies. Furthermore, we developed an RNA in situ hybridization protocol that allowed us to obtain the expression patterns of genes whose functions are important in establishing the embryonic body pattern. Our results revealed novel tephritid-specific features during A. ludens embryonic development and open new avenues for strategies aiming to control this important pest.


Assuntos
Desenvolvimento Embrionário , Tephritidae/embriologia , Transcriptoma , Animais , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Perfilação da Expressão Gênica
9.
Nat Commun ; 11(1): 894, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-32060283

RESUMO

Chromosomes are organized into high-frequency chromatin interaction domains called topologically associating domains (TADs), which are separated from each other by domain boundaries. The molecular mechanisms responsible for TAD formation are not yet fully understood. In Drosophila, it has been proposed that transcription is fundamental for TAD organization while the participation of genetic sequences bound by architectural proteins (APs) remains controversial. Here, we investigate the contribution of domain boundaries to TAD organization and the regulation of gene expression at the Notch gene locus in Drosophila. We find that deletion of domain boundaries results in TAD fusion and long-range topological defects that are accompanied by loss of APs and RNA Pol II chromatin binding as well as defects in transcription. Together, our results provide compelling evidence of the contribution of discrete genetic sequences bound by APs and RNA Pol II in the partition of the genome into TADs and in the regulation of gene expression in Drosophila.


Assuntos
Drosophila melanogaster/genética , Genoma de Inseto , Transcrição Gênica , Animais , Cromatina/genética , Cromatina/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo
10.
Epigenet Insights ; 12: 2516865719846093, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31106290

RESUMO

Enhancers play a central role in the transcriptional regulation of metazoans. Almost a decade ago, the discovery of their pervasive transcription into noncoding RNAs, termed enhancer RNAs (eRNAs), opened a whole new field of study. The presence of eRNAs correlates with enhancer activity; however, whether they act as functional molecules remains controversial. Here we review direct experimental evidence supporting a functional role of eRNAs in transcription and provide a general pipeline that could help in the design of experimental approaches to investigate the function of eRNAs. We propose that induction of transcriptional activity at enhancers promotes an increase in its activity by an RNA-mediated titration of regulatory proteins that can impact different processes like chromatin accessibility or chromatin looping. In a few cases, transcripts originating from enhancers have acquired specific molecular functions to regulate gene expression. We speculate that these transcripts are either nonannotated long noncoding RNAs (lncRNAs) or are evolving toward functional lncRNAs. Further work will be needed to comprehend better the biological activity of these transcripts.

11.
Methods Mol Biol ; 1752: 177-190, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29564772

RESUMO

Over the years, the study of gene function during development involved the implementation of sophisticated transgenic strategies to visualize how organisms change during their lifetime. These strategies are diverse and extremely useful and allowed the discovery of some of the fundamental mechanisms governing organism's development. Such strategies can be time-consuming, in some cases expensive, and require complex infrastructure. With the advent of the genome editing CRISPR-Cas9 RNA-guided DNA endonuclease system a tremendous progress has been achieved in manipulating diverse organisms and cell types. In recent years this system has contributed importantly to the design of novel experimental strategies to further understand developmental processes, to generate genetically modified animal models, and develop disease models. Here we highlight examples in which the genome editing CRISPR-Cas9 system has been employed to understand the mechanisms controlling embryonic development and disease.


Assuntos
Sistemas CRISPR-Cas/fisiologia , Edição de Genes/métodos , Animais , Sistemas CRISPR-Cas/genética , Cromatina/metabolismo , Reparo do DNA/genética , Reparo do DNA/fisiologia , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/genética
12.
Development ; 145(6)2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29567640

RESUMO

CTCF is a highly conserved zinc-finger DNA-binding protein that mediates interactions between distant sequences in the genome. As a consequence, CTCF regulates enhancer-promoter interactions and contributes to the three-dimensional organization of the genome. Recent studies indicate that CTCF is developmentally regulated, suggesting that it plays a role in cell type-specific genome organization. Here, we review these studies and discuss how CTCF functions during the development of various cell and tissue types, ranging from embryonic stem cells and gametes, to neural, muscle and cardiac cells. We propose that the lineage-specific control of CTCF levels, and its partnership with lineage-specific transcription factors, allows for the control of cell type-specific gene expression via chromatin looping.


Assuntos
Fator de Ligação a CCCTC , Diferenciação Celular/genética , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Animais , Cromatina/metabolismo , Células-Tronco Embrionárias/metabolismo , Conformação de Ácido Nucleico
13.
IUBMB Life ; 63(10): 881-95, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21901818

RESUMO

Cells must be able to respond rapidly and precisely not only to changes in their external environment but also to developmental and differentiation cues to determine when to divide, die, or acquire a particular cell fate. Signal transduction pathways are responsible for the integration and interpretation of most of such signals into specific transcriptional states. Those states are achieved by the modulation of chromatin structure that activates or represses transcription at particular loci. Although a large variety of signal transduction pathways have already been described, much less is known about the crosstalk between signal transduction and its consequent changes in chromatin structure and, therefore, gene expression. Here we present some examples of the relationship between chromatin-associated proteins and important signal transduction pathways during critical processes like development, differentiation, and disease. There is a great diversity of epigenetic mechanisms that have unexpected interactions with signaling pathways to establish transcriptional programs. Moreover, there are also particular cases where signaling pathways directly affect important components of the epigenetic machinery. Based on such examples, we further propose future research directions linking cell signaling and epigenetics. It is foreseeable that analyzing the relationship between cell signaling and epigenetics will be a huge area for future development that will help us understand the complex process by which a cell is able to induce transcriptional changes in response to external and internal signals.


Assuntos
Comunicação Celular/fisiologia , Montagem e Desmontagem da Cromatina/fisiologia , Epigênese Genética/fisiologia , Histonas/metabolismo , Modelos Biológicos , Transdução de Sinais/fisiologia , Animais , Proteínas Cromossômicas não Histona/metabolismo , Metilação de DNA/fisiologia , Proteínas de Drosophila/metabolismo , Histona Desmetilases/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Proteínas do Grupo Polycomb/metabolismo , Receptores Notch/metabolismo , Proteínas Wnt/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...