Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Mol Cancer ; 23(1): 126, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862995

RESUMO

BACKGROUND: In an extensive genomic analysis of lung adenocarcinomas (LUADs), driver mutations have been recognized as potential targets for molecular therapy. However, there remain cases where target genes are not identified. Super-enhancers and structural variants are frequently identified in several hundred loci per case. Despite this, most cancer research has approached the analysis of these data sets separately, without merging and comparing the data, and there are no examples of integrated analysis in LUAD. METHODS: We performed an integrated analysis of super-enhancers and structural variants in a cohort of 174 LUAD cases that lacked clinically actionable genetic alterations. To achieve this, we conducted both WGS and H3K27Ac ChIP-seq analyses using samples with driver gene mutations and those without, allowing for a comprehensive investigation of the potential roles of super-enhancer in LUAD cases. RESULTS: We demonstrate that most genes situated in these overlapped regions were associated with known and previously unknown driver genes and aberrant expression resulting from the formation of super-enhancers accompanied by genomic structural abnormalities. Hi-C and long-read sequencing data further corroborated this insight. When we employed CRISPR-Cas9 to induce structural abnormalities that mimicked cases with outlier ERBB2 gene expression, we observed an elevation in ERBB2 expression. These abnormalities are associated with a higher risk of recurrence after surgery, irrespective of the presence or absence of driver mutations. CONCLUSIONS: Our findings suggest that aberrant gene expression linked to structural polymorphisms can significantly impact personalized cancer treatment by facilitating the identification of driver mutations and prognostic factors, contributing to a more comprehensive understanding of LUAD pathogenesis.


Assuntos
Adenocarcinoma de Pulmão , Elementos Facilitadores Genéticos , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares , Receptor ErbB-2 , Humanos , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Mutação , Biomarcadores Tumorais/genética , Feminino , Masculino , Variação Estrutural do Genoma , Genômica/métodos , Pessoa de Meia-Idade , Prognóstico , Idoso
2.
J Clin Med ; 13(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38673490

RESUMO

Objectives: The study aimed to develop a deep learning-based edge AI model deployed on electrocardiograph (ECG) devices for the real-time detection of atrial fibrillation (AF) risk during sinus rhythm (SR) using standard 10 s, 12-lead electrocardiograms (ECGs). Methods: A novel approach was used to convert standard 12-lead ECGs into binary images for model input, and a lightweight convolutional neural network (CNN)-based model was trained using data collected by the Japan Agency for Medical and Research Development (AMED) between 2019 and 2022. Patients over 40 years old with digital, SR ECGs were retrospectively enrolled and divided into AF and non-AF groups. The data labeling was supervised by cardiologists. The dataset was randomly allocated into training, validation, and internal testing datasets. External testing was conducted on data collected from other hospitals. Results: The best-trained model achieved an AUC of 0.82 and 0.80, sensitivity of 79.5% and 72.3%, specificity of 77.8% and 77.7%, precision of 78.2% and 76.4%, and overall accuracy of 78.6% and 75.0% in the internal and external testing datasets, respectively. The deployed model and app package utilized 2.5 MB and 40 MB of the available ROM and RAM capacity on the edge ECG device, correspondingly. The processing time for AF risk detection was approximately 2 s. Conclusions: The model maintains comparable performance and improves its suitability for deployment on resource-constrained ECG devices, thereby expanding its potential impact to a wide range of healthcare settings. Its successful deployment enables real-time AF risk detection during SR, allowing for timely intervention to prevent AF-related serious consequences like stroke and premature death.

3.
Exp Mol Med ; 56(3): 646-655, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38433247

RESUMO

DNA methylation is an epigenetic modification that results in dynamic changes during ontogenesis and cell differentiation. DNA methylation patterns regulate gene expression and have been widely researched. While tools for DNA methylation analysis have been developed, most of them have focused on intergroup comparative analysis within a dataset; therefore, it is difficult to conduct cross-dataset studies, such as rare disease studies or cross-institutional studies. This study describes a novel method for DNA methylation analysis, namely, methPLIER, which enables interdataset comparative analyses. methPLIER combines Pathway Level Information Extractor (PLIER), which is a non-negative matrix factorization (NMF) method, with regularization by a knowledge matrix and transfer learning. methPLIER can be used to perform intersample and interdataset comparative analysis based on latent feature matrices, which are obtained via matrix factorization of large-scale data, and factor-loading matrices, which are obtained through matrix factorization of the data to be analyzed. We used methPLIER to analyze a lung cancer dataset and confirmed that the data decomposition reflected sample characteristics for recurrence-free survival. Moreover, methPLIER can analyze data obtained via different preprocessing methods, thereby reducing distributional bias among datasets due to preprocessing. Furthermore, methPLIER can be employed for comparative analyses of methylation data obtained from different platforms, thereby reducing bias in data distribution due to platform differences. methPLIER is expected to facilitate cross-sectional DNA methylation data analysis and enhance DNA methylation data resources.


Assuntos
Metilação de DNA , Neoplasias , Humanos , Estudos Transversais , Algoritmos , Epigênese Genética , Neoplasias/genética
4.
Exp Mol Med ; 55(10): 2205-2219, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37779141

RESUMO

High-grade serous ovarian carcinoma (HGSOC) is the most lethal gynecological malignancy. To date, the profiles of gene mutations and copy number alterations in HGSOC have been well characterized. However, the patterns of epigenetic alterations and transcription factor dysregulation in HGSOC have not yet been fully elucidated. In this study, we performed integrative omics analyses of a series of stepwise HGSOC model cells originating from human fallopian tube secretory epithelial cells (HFTSECs) to investigate early epigenetic alterations in HGSOC tumorigenesis. Assay for transposase-accessible chromatin using sequencing (ATAC-seq), chromatin immunoprecipitation sequencing (ChIP-seq), and RNA sequencing (RNA-seq) methods were used to analyze HGSOC samples. Additionally, protein expression changes in target genes were confirmed using normal HFTSECs, serous tubal intraepithelial carcinomas (STICs), and HGSOC tissues. Transcription factor motif analysis revealed that the DNA-binding activity of the AP-1 complex and GATA family proteins was dysregulated during early tumorigenesis. The protein expression levels of JUN and FOSL2 were increased, and those of GATA6 and DAB2 were decreased in STIC lesions, which were associated with epithelial-mesenchymal transition (EMT) and proteasome downregulation. The genomic region around the FRA16D site, containing a cadherin cluster region, was epigenetically suppressed by oncogenic signaling. Proteasome inhibition caused the upregulation of chemokine genes, which may facilitate immune evasion during HGSOC tumorigenesis. Importantly, MEK inhibitor treatment reversed these oncogenic alterations, indicating its clinical effectiveness in a subgroup of patients with HGSOC. This result suggests that MEK inhibitor therapy may be an effective treatment option for chemotherapy-resistant HGSOC.


Assuntos
Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Feminino , Humanos , Neoplasias Ovarianas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/metabolismo , Cistadenocarcinoma Seroso/patologia , Carcinogênese/genética , Fatores de Transcrição/metabolismo , Epigênese Genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo
5.
Brief Bioinform ; 24(3)2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-36960780

RESUMO

The analysis of super-enhancers (SEs) has recently attracted attention in elucidating the molecular mechanisms of cancer and other diseases. SEs are genomic structures that strongly induce gene expression and have been reported to contribute to the overexpression of oncogenes. Because the analysis of SEs and integrated analysis with other data are performed using large amounts of genome-wide data, artificial intelligence technology, with machine learning at its core, has recently begun to be utilized. In promoting precision medicine, it is important to consider information from SEs in addition to genomic data; therefore, machine learning technology is expected to be introduced appropriately in terms of building a robust analysis platform with a high generalization performance. In this review, we explain the history and principles of SE, and the results of SE analysis using state-of-the-art machine learning and integrated analysis with other data are presented to provide a comprehensive understanding of the current status of SE analysis in the field of medical biology. Additionally, we compared the accuracy between existing machine learning methods on the benchmark dataset and attempted to explore the kind of data preprocessing and integration work needed to make the existing algorithms work on the benchmark dataset. Furthermore, we discuss the issues and future directions of current SE analysis.


Assuntos
Algoritmos , Inteligência Artificial , Aprendizado de Máquina , Genômica , Elementos Facilitadores Genéticos
6.
J Pers Med ; 12(12)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36556220

RESUMO

Ovarian clear cell carcinoma (OCCC) has a poor prognosis, and its therapeutic strategy has not been established. PRELP is a leucine-rich repeat protein in the extracellular matrix of connective tissues. Although PRELP anchors the basement membrane to the connective tissue and is absent in most epithelial cancers, much remains unknown regarding its function as a regulator of ligand-mediated signaling pathways. Here, we obtained sets of differentially expressed genes by PRELP expression using OCCC cell lines. We found that more than 1000 genes were significantly altered by PRELP expression, particularly affecting the expression of a group of genes involved in the PI3K-AKT signaling pathway. Furthermore, we revealed the loss of active histone marks on the loci of the PRELP gene in patients with OCCC and how its forced expression inhibited cell proliferation. These findings suggest that PRELP is not only a molecule anchored in connective tissues but is also a signaling molecule acting in a tumor-suppressive manner. It can serve as the basis for early detection and novel therapeutic approaches for OCCC toward precision medicine.

7.
Clin Epigenetics ; 14(1): 147, 2022 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-36371227

RESUMO

BACKGROUND: Proline/arginine-rich end leucine-rich repeat protein (PRELP) is a member of the small leucine-rich proteoglycan family of extracellular matrix proteins, which is markedly suppressed in the majority of early-stage epithelial cancers and plays a role in regulating the epithelial-mesenchymal transition by altering cell-cell adhesion. Although PRELP is an important factor in the development and progression of bladder cancer, the mechanism of PRELP gene repression remains unclear. RESULTS: Here, we show that repression of PRELP mRNA expression in bladder cancer cells is alleviated by HDAC inhibitors (HDACi) through histone acetylation. Using ChIP-qPCR analysis, we found that acetylation of lysine residue 5 of histone H2B in the PRELP gene promoter region is a marker for the de-repression of PRELP expression. CONCLUSIONS: These results suggest a mechanism through which HDACi may partially regulate the function of PRELP to suppress the development and progression of bladder cancer. Some HDACi are already in clinical use, and the findings of this study provide a mechanistic basis for further investigation of HDACi-based therapeutic strategies.


Assuntos
Histonas , Neoplasias da Bexiga Urinária , Humanos , Histonas/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Lisina/metabolismo , Glicoproteínas/genética , Acetilação , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Metilação de DNA , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo
8.
Exp Hematol Oncol ; 11(1): 82, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36316731

RESUMO

Since U.S. President Barack Obama announced the Precision Medicine Initiative in his New Year's State of the Union address in 2015, the establishment of a precision medicine system has been emphasized worldwide, particularly in the field of oncology. With the advent of next-generation sequencers specifically, genome analysis technology has made remarkable progress, and there are active efforts to apply genome information to diagnosis and treatment. Generally, in the process of feeding back the results of next-generation sequencing analysis to patients, a molecular tumor board (MTB), consisting of experts in clinical oncology, genetic medicine, etc., is established to discuss the results. On the other hand, an MTB currently involves a large amount of work, with humans searching through vast databases and literature, selecting the best drug candidates, and manually confirming the status of available clinical trials. In addition, as personalized medicine advances, the burden on MTB members is expected to increase in the future. Under these circumstances, introducing cutting-edge artificial intelligence (AI) technology and information and communication technology to MTBs while reducing the burden on MTB members and building a platform that enables more accurate and personalized medical care would be of great benefit to patients. In this review, we introduced the latest status of elemental technologies that have potential for AI utilization in MTB, and discussed issues that may arise in the future as we progress with AI implementation.

9.
Cancers (Basel) ; 14(19)2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36230849

RESUMO

Retinoblastoma (RB) is the most common intraocular pediatric cancer. Nearly all cases of RB are associated with mutations compromising the function of the RB1 tumor suppressor gene. We previously demonstrated that PRELP is widely downregulated in various cancers and our in vivo and in vitro analysis revealed PRELP as a novel tumor suppressor and regulator of EMT. In addition, PRELP is located at chromosome 1q31.1, around a region hypothesized to be associated with the initiation of malignancy in RB. Therefore, in this study, we investigated the role of PRELP in RB through in vitro analysis and next-generation sequencing. Immunostaining revealed that PRELP is expressed in Müller glial cells in the retina. mRNA expression profiling of PRELP-/- mouse retina and PRELP-treated RB cells found that PRELP contributes to RB progression via regulation of the cancer microenvironment, in which loss of PRELP reduces cell-cell adhesion and facilitates EMT. Our observations suggest that PRELP may have potential as a new strategy for RB treatment.

10.
Brief Bioinform ; 23(4)2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35788277

RESUMO

The increase in the expectations of artificial intelligence (AI) technology has led to machine learning technology being actively used in the medical field. Non-negative matrix factorization (NMF) is a machine learning technique used for image analysis, speech recognition, and language processing; recently, it is being applied to medical research. Precision medicine, wherein important information is extracted from large-scale medical data to provide optimal medical care for every individual, is considered important in medical policies globally, and the application of machine learning techniques to this end is being handled in several ways. NMF is also introduced differently because of the characteristics of its algorithms. In this review, the importance of NMF in the field of medicine, with a focus on the field of oncology, is described by explaining the mathematical science of NMF and the characteristics of the algorithm, providing examples of how NMF can be used to establish precision medicine, and presenting the challenges of NMF. Finally, the direction regarding the effective use of NMF in the field of oncology is also discussed.


Assuntos
Inteligência Artificial , Medicina de Precisão , Algoritmos , Aprendizado de Máquina
11.
Mol Ther Nucleic Acids ; 28: 910-919, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35694210

RESUMO

Neuropathic pain, a heterogeneous condition, affects 7%-10% of the general population. To date, efficacious and safe therapeutic approaches remain limited. Antisense oligonucleotide (ASO) therapy has opened the door to treat spinal muscular atrophy, with many ongoing clinical studies determining its therapeutic utility. ASO therapy for neuropathic pain and peripheral nerve disease requires efficient gene delivery and knockdown in both the dorsal root ganglion (DRG) and sciatic nerve, key tissues for pain signaling. We previously developed a new DNA/RNA heteroduplex oligonucleotide (HDO) technology that achieves highly efficient gene knockdown in the liver. Here, we demonstrated that intravenous injection of HDO, comprising an ASO and its complementary RNA conjugated to α-tocopherol, silences endogenous gene expression more than 2-fold in the DRG, and sciatic nerve with higher potency, efficacy, and broader distribution than ASO alone. Of note, we observed drastic target suppression in all sizes of neuronal DRG populations by in situ hybridization. Our findings establish HDO delivery as an investigative and potentially therapeutic platform for neuropathic pain and peripheral nerve disease.

12.
Biomedicines ; 10(5)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35625819

RESUMO

Endocardial border detection is a key step in assessing left ventricular systolic function in echocardiography. However, this process is still not sufficiently accurate, and manual retracing is often required, causing time-consuming and intra-/inter-observer variability in clinical practice. To address these clinical issues, more accurate and normalized automatic endocardial border detection would be valuable. Here, we develop a deep learning-based method for automated endocardial border detection and left ventricular functional assessment in two-dimensional echocardiographic videos. First, segmentation of the left ventricular cavity was performed in the six representative projections for a cardiac cycle. We employed four segmentation methods: U-Net, UNet++, UNet3+, and Deep Residual U-Net. UNet++ and UNet3+ showed a sufficiently high performance in the mean value of intersection over union and Dice coefficient. The accuracy of the four segmentation methods was then evaluated by calculating the mean value for the estimation error of the echocardiographic indexes. UNet++ was superior to the other segmentation methods, with the acceptable mean estimation error of the left ventricular ejection fraction of 10.8%, global longitudinal strain of 8.5%, and global circumferential strain of 5.8%, respectively. Our method using UNet++ demonstrated the best performance. This method may potentially support examiners and improve the workflow in echocardiography.

13.
Biomedicines ; 10(3)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35327353

RESUMO

Diagnostic support tools based on artificial intelligence (AI) have exhibited high performance in various medical fields. However, their clinical application remains challenging because of the lack of explanatory power in AI decisions (black box problem), making it difficult to build trust with medical professionals. Nevertheless, visualizing the internal representation of deep neural networks will increase explanatory power and improve the confidence of medical professionals in AI decisions. We propose a novel deep learning-based explainable representation "graph chart diagram" to support fetal cardiac ultrasound screening, which has low detection rates of congenital heart diseases due to the difficulty in mastering the technique. Screening performance improves using this representation from 0.966 to 0.975 for experts, 0.829 to 0.890 for fellows, and 0.616 to 0.748 for residents in the arithmetic mean of area under the curve of a receiver operating characteristic curve. This is the first demonstration wherein examiners used deep learning-based explainable representation to improve the performance of fetal cardiac ultrasound screening, highlighting the potential of explainable AI to augment examiner capabilities.

14.
Commun Biol ; 5(1): 39, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35017636

RESUMO

High-grade serous ovarian carcinoma (HGSOC) is the most aggressive gynecological malignancy, resulting in approximately 70% of ovarian cancer deaths. However, it is still unclear how genetic dysregulations and biological processes generate the malignant subtype of HGSOC. Here we show that expression levels of microtubule affinity-regulating kinase 3 (MARK3) are downregulated in HGSOC, and that its downregulation significantly correlates with poor prognosis in HGSOC patients. MARK3 overexpression suppresses cell proliferation and angiogenesis of ovarian cancer cells. The LKB1-MARK3 axis is activated by metabolic stress, which leads to the phosphorylation of CDC25B and CDC25C, followed by induction of G2/M phase arrest. RNA-seq and ATAC-seq analyses indicate that MARK3 attenuates cell cycle progression and angiogenesis partly through downregulation of AP-1 and Hippo signaling target genes. The synthetic lethal therapy using metabolic stress inducers may be a promising therapeutic choice to treat the LKB1-MARK3 axis-dysregulated HGSOCs.


Assuntos
Quinases Proteína-Quinases Ativadas por AMP/genética , Genes Supressores de Tumor , Neoplasias Ovarianas , Proteínas Serina-Treonina Quinases/genética , Estresse Fisiológico/genética , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação para Baixo/genética , Epigênese Genética/genética , Feminino , Humanos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia
15.
Int J Oncol ; 60(1)2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34913069

RESUMO

RNA modifications have attracted increasing interest in recent years because they have been frequently implicated in various human diseases, including cancer, highlighting the importance of dynamic post­transcriptional modifications. Methyltransferase­like 6 (METTL6) is a member of the RNA methyltransferase family that has been identified in many cancers; however, little is known about its specific role or mechanism of action. In the present study, we aimed to study the expression levels and functional role of METTL6 in hepatocellular carcinoma (HCC), and further investigate the relevant pathways. To this end, we systematically conducted bioinformatics analysis of METTL6 in HCC using gene expression data and clinical information from a publicly available dataset. The mRNA expression levels of METTL6 were significantly upregulated in HCC tumor tissues compared to that in adjacent non­tumor tissues and strongly associated with poorer survival outcomes in patients with HCC. CRISPR/Cas9­mediated knockout of METTL6 in HCC cell lines remarkably inhibited colony formation, cell proliferation, cell migration, cell invasion and cell attachment ability. RNA sequencing analysis demonstrated that knockout of METTL6 significantly suppressed the expression of cell adhesion­related genes. However, chromatin immunoprecipitation sequencing results revealed no significant differences in enhancer activities between cells, which suggests that METTL6 may regulate genes of interest post­transcriptionally. In addition, it was demonstrated for the first time that METTL6 was localized in the cytosol as detected by immunofluorescence analysis, which indicates the plausible location of RNA modification mediated by METTL6. Our findings provide further insight into the function of RNA modifications in cancer and suggest a possible role of METTL6 as a therapeutic target in HCC.


Assuntos
Carcinoma Hepatocelular/genética , Moléculas de Adesão Celular/efeitos adversos , tRNA Metiltransferases/efeitos adversos , Carcinoma Hepatocelular/fisiopatologia , Moléculas de Adesão Celular/uso terapêutico , Linhagem Celular , Movimento Celular/genética , Movimento Celular/fisiologia , Proliferação de Células/genética , Proliferação de Células/fisiologia , Regulação para Baixo/genética , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/fisiopatologia , tRNA Metiltransferases/metabolismo
16.
Biomedicines ; 9(11)2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34829742

RESUMO

In recent years, the diversity of cancer cells in tumor tissues as a result of intratumor heterogeneity has attracted attention. In particular, the development of single-cell analysis technology has made a significant contribution to the field; technologies that are centered on single-cell RNA sequencing (scRNA-seq) have been reported to analyze cancer constituent cells, identify cell groups responsible for therapeutic resistance, and analyze gene signatures of resistant cell groups. However, although single-cell analysis is a powerful tool, various issues have been reported, including batch effects and transcriptional noise due to gene expression variation and mRNA degradation. To overcome these issues, machine learning techniques are currently being introduced for single-cell analysis, and promising results are being reported. In addition, machine learning has also been used in various ways for single-cell analysis, such as single-cell assay of transposase accessible chromatin sequencing (ATAC-seq), chromatin immunoprecipitation sequencing (ChIP-seq) analysis, and multi-omics analysis; thus, it contributes to a deeper understanding of the characteristics of human diseases, especially cancer, and supports clinical applications. In this review, we present a comprehensive introduction to the implementation of machine learning techniques in medical research for single-cell analysis, and discuss their usefulness and future potential.

17.
J Pers Med ; 11(9)2021 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-34575663

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic began at the end of December 2019, giving rise to a high rate of infections and causing COVID-19-associated deaths worldwide. It was first reported in Wuhan, China, and since then, not only global leaders, organizations, and pharmaceutical/biotech companies, but also researchers, have directed their efforts toward overcoming this threat. The use of artificial intelligence (AI) has recently surged internationally and has been applied to diverse aspects of many problems. The benefits of using AI are now widely accepted, and many studies have shown great success in medical research on tasks, such as the classification, detection, and prediction of disease, or even patient outcome. In fact, AI technology has been actively employed in various ways in COVID-19 research, and several clinical applications of AI-equipped medical devices for the diagnosis of COVID-19 have already been reported. Hence, in this review, we summarize the latest studies that focus on medical imaging analysis, drug discovery, and therapeutics such as vaccine development and public health decision-making using AI. This survey clarifies the advantages of using AI in the fight against COVID-19 and provides future directions for tackling the COVID-19 pandemic using AI techniques.

18.
Biomedicines ; 9(9)2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34572329

RESUMO

In 2019, a novel severe acute respiratory syndrome called coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was reported and was declared a pandemic by the World Health Organization (WHO) in March 2020. With the advancing development of COVID-19 vaccines and their administration globally, it is expected that COVID-19 will converge in the future; however, the situation remains unpredictable because of a series of reports regarding SARS-CoV-2 variants. Currently, there are still few specific effective treatments for COVID-19, as many unanswered questions remain regarding the pathogenic mechanism of COVID-19. Continued elucidation of COVID-19 pathogenic mechanisms is a matter of global importance. In this regard, recent reports have suggested that epigenetics plays an important role; for instance, the expression of angiotensin I converting enzyme 2 (ACE2) receptor, an important factor in human infection with SARS-CoV-2, is epigenetically regulated; further, DNA methylation status is reported to be unique to patients with COVID-19. In this review, we focus on epigenetic mechanisms to provide a new molecular framework for elucidating the pathogenesis of SARS-CoV-2 infection in humans and of COVID-19, along with the possibility of new diagnostic and therapeutic strategies.

19.
Biomedicines ; 9(7)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201827

RESUMO

Artificial intelligence (AI) is being increasingly adopted in medical research and applications. Medical AI devices have continuously been approved by the Food and Drug Administration in the United States and the responsible institutions of other countries. Ultrasound (US) imaging is commonly used in an extensive range of medical fields. However, AI-based US imaging analysis and its clinical implementation have not progressed steadily compared to other medical imaging modalities. The characteristic issues of US imaging owing to its manual operation and acoustic shadows cause difficulties in image quality control. In this review, we would like to introduce the global trends of medical AI research in US imaging from both clinical and basic perspectives. We also discuss US image preprocessing, ingenious algorithms that are suitable for US imaging analysis, AI explainability for obtaining informed consent, the approval process of medical AI devices, and future perspectives towards the clinical application of AI-based US diagnostic support technologies.

20.
Front Oncol ; 11: 666937, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34055633

RESUMO

With the completion of the International Human Genome Project, we have entered what is known as the post-genome era, and efforts to apply genomic information to medicine have become more active. In particular, with the announcement of the Precision Medicine Initiative by U.S. President Barack Obama in his State of the Union address at the beginning of 2015, "precision medicine," which aims to divide patients and potential patients into subgroups with respect to disease susceptibility, has become the focus of worldwide attention. The field of oncology is also actively adopting the precision oncology approach, which is based on molecular profiling, such as genomic information, to select the appropriate treatment. However, the current precision oncology is dominated by a method called targeted-gene panel (TGP), which uses next-generation sequencing (NGS) to analyze a limited number of specific cancer-related genes and suggest optimal treatments, but this method causes the problem that the number of patients who benefit from it is limited. In order to steadily develop precision oncology, it is necessary to integrate and analyze more detailed omics data, such as whole genome data and epigenome data. On the other hand, with the advancement of analysis technologies such as NGS, the amount of data obtained by omics analysis has become enormous, and artificial intelligence (AI) technologies, mainly machine learning (ML) technologies, are being actively used to make more efficient and accurate predictions. In this review, we will focus on whole genome sequencing (WGS) analysis and epigenome analysis, introduce the latest results of omics analysis using ML technologies for the development of precision oncology, and discuss the future prospects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...