Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 125(26): 266102, 2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33449712

RESUMO

Physical systems with material properties modulated in time provide versatile routes for designing magnetless nonreciprocal devices. Traditionally, nonreciprocity in such systems is achieved exploiting both temporal and spatial modulations, which inevitably requires a series of time-modulated elements distributed in space. In this Letter, we introduce a concept of bianisotropic time-modulated systems capable of nonreciprocal wave propagation at the fundamental frequency and based on uniform, solely temporal material modulations. In the absence of temporal modulations, the considered bianisotropic systems are reciprocal. We theoretically explain the nonreciprocal effect by analyzing wave propagation in an unbounded bianisotropic time-modulated medium. The effect stems from temporal modulation of spatial dispersion effects which to date were not taken into account in previous studies based on the local-permittivity description. We propose a circuit design of a bianisotropic metasurface that can provide phase-insensitive isolation and unidirectional amplification.

2.
Phys Rev Lett ; 114(9): 095503, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25793826

RESUMO

Conventional mirrors obey the simple reflection law that a plane wave is reflected as a plane wave, at the same angle. To engineer spatial distributions of fields reflected from a mirror, one can either shape the reflector or position some phase-correcting elements on top of a mirror surface. Here we show, both theoretically and experimentally, that full-power reflection with general control over the reflected wave phase is possible with a single-layer array of deeply subwavelength inclusions. These proposed artificial surfaces, metamirrors, provide various functions of shaped or nonuniform reflectors without utilizing any mirror. This can be achieved only if the forward and backward scattering of the inclusions in the array can be engineered independently, and we prove that it is possible using electrically and magnetically polarizable inclusions. The proposed subwavelength inclusions possess desired reflecting properties at the operational frequency band, while at other frequencies the array is practically transparent. The metamirror concept leads to a variety of applications over the entire electromagnetic spectrum, such as optically transparent focusing antennas for satellites, multifrequency reflector antennas for radio astronomy, low-profile conformal antennas for telecommunications, and nanoreflectarray antennas for integrated optics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...