Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 59(50): 7717-7730, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37199319

RESUMO

Nowadays, as a result of the emergence of low-dimensional hybrid structures, the scientific community is interested in their interfacial carrier dynamics, including charge transfer and energy transfer. By combining the potential of transition metal dichalcogenides (TMDs) and nanocrystals (NCs) with low-dimensional extension, hybrid structures of semiconducting nanoscale matter can lead to fascinating new technological scenarios. Their characteristics make them intriguing candidates for electronic and optoelectronic devices, like transistors or photodetectors, bringing with them challenges but also opportunities. Here, we will review recent research on the combined TMD/NC hybrid system with an emphasis on two major interaction mechanisms: energy transfer and charge transfer. With a focus on the quantum well nature in these hybrid semiconductors, we will briefly highlight state-of-the-art protocols for their structure formation and discuss the interaction mechanisms of energy versus charge transfer, before concluding with a perspective section that highlights novel types of interactions between NCs and TMDs.

2.
ACS Energy Lett ; 7(11): 3788-3790, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36398094

RESUMO

We demonstrate efficient, stable, and fully RoHS-compliant near-infrared (NIR) light-emitting diodes (LEDs) based on InAs/ZnSe quantum dots (QDs) synthesized by employing a commercially available amino-As precursor. They have a record external quantum efficiency of 5.5% at 947 nm and an operational lifetime of ∼32 h before reaching 50% of their initial luminance. Our findings offer a new solution for developing RoHS-compliant light-emitting technologies based on Pb-free colloidal QDs.

3.
Small ; 17(42): e2103281, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34545684

RESUMO

3D topological insulators (TI) host surface carriers with extremely high mobility. However, their transport properties are typically dominated by bulk carriers that outnumber the surface carriers by orders of magnitude. A strategy is herein presented to overcome the problem of bulk carrier domination by using 3D TI nanoparticles, which are compacted by hot pressing to macroscopic nanograined bulk samples. Bi2 Te3 nanoparticles well known for their excellent thermoelectric and 3D TI properties serve as the model system. As key enabler for this approach, a specific synthesis is applied that creates nanoparticles with a low level of impurities and surface contamination. The compacted nanograined bulk contains a high number of interfaces and grain boundaries. Here it is shown that these samples exhibit metallic-like electrical transport properties and a distinct weak antilocalization. A downward trend in the electrical resistivity at temperatures below 5 K is attributed to an increase in the coherence length by applying the Hikami-Larkin-Nagaoka model. THz time-domain spectroscopy reveals a dominance of the surface transport at low frequencies with a mobility of above 103 cm2 V-1 s-1 even at room temperature. These findings clearly demonstrate that nanograined bulk Bi2 Te3 features surface carrier properties that are of importance for technical applications.

4.
Nanoscale ; 13(19): 8773-8783, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-33959732

RESUMO

The growing demand for self-powered devices has led to the study of novel energy storage solutions that exploit green energies whilst ensuring self-sufficiency. In this context, doped metal oxide nanocrystals (MO NCs) are interesting nanosized candidates with the potential to unify solar energy conversion and storage into one set of materials. In this review, we aim to present recent and important developments of doped MO NCs for light-driven multi-charge accumulation (i.e., photodoping) and solar energy storage. We will discuss the general concept of photodoping, the spectroscopic and theoretical tools to determine the charging process, together with unresolved open questions. We conclude the review by highlighting possible device architectures based on doped MO NCs that are expected to considerably impact the field of energy storage by combining in a unique way the conversion and storage of solar power and opening the path towards competitive and novel light-driven energy storage solutions.

5.
Angew Chem Int Ed Engl ; 59(31): 12674-12679, 2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-32338404

RESUMO

Microcrystallites are promising minute mirrorless laser sources. A variety of luminescent organic compounds have been exploited along this line, but dendrimers have been inapplicable owing to their fragility and extremely poor crystallinity. Now, a dendrimer family that overcomes these difficulties is presented. First-, second-, and third-generation carbazole (Cz) dendrimers with a carbon-bridged oligo(phenylenevinylene) (COPV2) core (GnCOPV2, n=1-3) assemble to form microcrystals. The COPV2 cores align uni/bidirectionally in the crystals while the Cz units in G2- and G3COPV2 align omnidirectionally. The dendrons work as light-harvesting antennas that absorb non-polarized light and transfer it to the COPV2 core, from which a polarized luminescence radiates. Furthermore, these crystals act as laser resonators, where the lasing thresholds are strongly coupled with the crystal morphology and the orientation of COPV2, which is in contrast with the conventional amorphous dendrimers.

6.
Dalton Trans ; 43(18): 6623-30, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24667891

RESUMO

In this article, we discuss the microwave synthesis of sodium dodecyl sulphate (SDS) stabilized Ln(3+)-doped CaMoO4 nanocrystals (Ln(3+) = Eu(3+), Er(3+)/Yb(3+)). The nanocrystals are quite monodispersed with an average size close to 100 nm. FTIR and TGA analyses suggest strong binding of the SDS molecules to the CaMoO4 nanocrystals surface. The high dispersibility of the nanocrystals in water implies that SDS stabilizes the nanocrystals as a bilayer structure. The SDS coating also assists in the easy dispersion of the nanocrystals in toluene without any additional surface chemistry. The Eu(3+) ions doped in the CaMoO4 nanocrystals display very strong red luminescence with a quantum yield close to 40%. Under 980 nm excitation, Er(3+)/Yb(3+)-doped CaMoO4 nanocrystals display Er(3+) emissions at 550 and 650 nm. In addition, interestingly, a NIR peak at around 833 nm is observed, which occurred via a three photon process. Furthermore, the CaMoO4 nanocrystals exhibit photocatalytic activity which is studied through the degradation of Rhodamine B (RhB) dye in neutral conditions. The RhB dye is significantly degraded by ~80% under UV illumination within 4 h and the rate of degradation is comparable to that observed for well known ZnO nanoparticles. The high luminescence quantum efficiency and strong photocatalytic activity of the Ln(3+)-doped CaMoO4 nanocrystals make them a potential material for dual applications such as bio-imaging and photocatalysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...