Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3340, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649703

RESUMO

During organ regeneration, after the initial responses to injury, gene expression patterns similar to those in normal development are reestablished during subsequent morphogenesis phases. This supports the idea that regeneration recapitulates development and predicts the existence of genes that reboot the developmental program after the initial responses. However, such rebooting mechanisms are largely unknown. Here, we explore core rebooting factors that operate during Xenopus limb regeneration. Transcriptomic analysis of larval limb blastema reveals that hoxc12/c13 show the highest regeneration specificity in expression. Knocking out each of them through genome editing inhibits cell proliferation and expression of a group of genes that are essential for development, resulting in autopod regeneration failure, while limb development and initial blastema formation are not affected. Furthermore, the induction of hoxc12/c13 expression partially restores froglet regenerative capacity which is normally very limited compared to larval regeneration. Thus, we demonstrate the existence of genes that have a profound impact alone on rebooting of the developmental program in a regeneration-specific manner.


Assuntos
Extremidades , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio , Regeneração , Proteínas de Xenopus , Xenopus laevis , Animais , Proliferação de Células/genética , Extremidades/fisiologia , Edição de Genes , Perfilação da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Larva/crescimento & desenvolvimento , Larva/genética , Regeneração/genética , Regeneração/fisiologia , Proteínas de Xenopus/metabolismo , Proteínas de Xenopus/genética , Masculino , Feminino
2.
Sci Rep ; 11(1): 4069, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33603023

RESUMO

Collective cell migration is a fundamental process in embryonic development and tissue homeostasis. This is a macroscopic population-level phenomenon that emerges across hierarchy from microscopic cell-cell interactions; however, the underlying mechanism remains unclear. Here, we addressed this issue by focusing on epithelial collective cell migration, driven by the mechanical force regulated by chemical signals of traveling ERK activation waves, observed in wound healing. We propose a hierarchical mathematical framework for understanding how cells are orchestrated through mechanochemical cell-cell interaction. In this framework, we mathematically transformed a particle-based model at the cellular level into a continuum model at the tissue level. The continuum model described relationships between cell migration and mechanochemical variables, namely, ERK activity gradients, cell density, and velocity field, which could be compared with live-cell imaging data. Through numerical simulations, the continuum model recapitulated the ERK wave-induced collective cell migration in wound healing. We also numerically confirmed a consistency between these two models. Thus, our hierarchical approach offers a new theoretical platform to reveal a causality between macroscopic tissue-level and microscopic cellular-level phenomena. Furthermore, our model is also capable of deriving a theoretical insight on both of mechanical and chemical signals, in the causality of tissue and cellular dynamics.


Assuntos
Movimento Celular/fisiologia , Células Epiteliais/fisiologia , Animais , Comunicação Celular/fisiologia , Células Epiteliais/metabolismo , Sistema de Sinalização das MAP Quinases , Modelos Biológicos , Cicatrização/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...