Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Enzyme Microb Technol ; 168: 110262, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37224590

RESUMO

Alka(e)nes are high-value chemicals with a potentially broad range of industrial applications because of their following advantages: (1) chemical and structural resemblance to petroleum hydrocarbons and (2) higher energy density and hydrophobicity than those of other biofuels. The low yield of bio-alka(e)nes, however, hinders their commercial application. The activity and solubility of acyl carrier protein (ACP) reductase (AAR) affect alka(e)ne biosynthesis in cyanobacteria. The enhancement of the activity and concentration of soluble AAR through genetic and process engineering can improve bio-alka(e)ne yield. Although fusion tags are used to enhance the expression or solubility of recombinant proteins, their effectiveness in improving the production of bio-alka(e)nes has not yet been reported. Fusion tags can be used to improve the amount or activity of soluble AAR in Escherichia coli and to increase the yield of alka(e)nes in E. coli cells co-expressing aldehyde deformylating oxygenase (ADO). Hence, in the present study, histidine (His6/His12), thioredoxin (Trx), maltose-binding protein (MBP), and N-utilization substance (NusA) were used as AAR fusion tags. The strain expressing SeAAR with His12 tag and NpADO showed a 7.2-fold higher yield of alka(e)nes than the strain expressing AAR without fusion tag and NpADO. The highest titer of alka(e)nes (194.78 mg/L) was achieved with the His12 tag.


Assuntos
Escherichia coli , Oxirredutases , Oxirredutases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteína de Transporte de Acila/genética , Proteína de Transporte de Acila/metabolismo , Alcanos/metabolismo , Oxigenases/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Solubilidade
2.
Plants (Basel) ; 11(5)2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35270179

RESUMO

Sago palm (Metroxylon sagu Rottb.) grows in well-drained mineral soil and in peatland with high groundwater levels until complete submersion. However, the published information on nutrient uptake and carbohydrate content in sago palms growing under waterlogging remains unreported. This experiment observed sago palm growth performance under normal soil conditions (non-submerged conditions) as a control plot and extended waterlogged conditions. Several parameters were analyzed: Plant morphological growth traits, nitrogen, phosphorus, potassium, and sugar concentration in the plant organ, including sucrose, glucose, starch, and non-structural carbohydrate. The analysis found that sago palm morphological growth traits were not significantly affected by extended waterlogging. However, waterlogging reduced carbohydrate levels in the upper part of the sago palm, especially the petiole, and increased sugar levels, especially glucose, in roots. Waterlogging also reduced N concentration in roots and leaflets and P in petioles. The K level was independent of waterlogging as the sago palm maintained a sufficient level in all of the plant organs. Long duration waterlogging may reduce the plant's economic value as the starch level in the trunk decreases, although sago palm can grow while waterlogged.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...