Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Surg Obes Relat Dis ; 18(6): 694-702, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35361540

RESUMO

BACKGROUND: Discovering the role duodenal exclusion plays in weight loss and resolution of type 2 diabetes (T2D) may help refine the surgical and nonsurgical treatment of obesity and T2D. OBJECTIVES: To assess changes in glucose homeostasis due to duodenal exclusion using a duodenal-jejunal bypass liner (DJBL) in a nonobese canine model. SETTING: Academic laboratory setting. METHODS: An intravenous glucose tolerance test (IVGTT), and a mixed-meal tolerance test (MMTT) at baseline, 1, and 6 weeks post DJBL implantation (I1 and I6, respectively), and 1 and 6 weeks post DJBL removal (R1 and R6, respectively) were done in canines (n = 7) fed a normal chow diet. RESULTS: Placement of the DJBL induced weight loss that was maintained until 4 weeks post removal (R4), despite normal food intake. Total bile acids (TBA) and glucagon-like peptide-1 (GLP-1) during the MMTT were significantly increased at I1 and were associated with increased lactate and free fatty acids. Hypoglycemia counter-regulation was blunted during the IVGTT at I1 and I6, returning to baseline at R1. While there were no changes to insulin sensitivity during the experiment, glucose tolerance was significantly increased following the removal of the DJBL at R1. CONCLUSION: These data show that in a normoglycemic, nonobese canine model, duodenal exclusion induces energy intake-independent weight loss and negative metabolic effects that are reversed following re-exposure of the small intestine to nutrients.


Assuntos
Cirurgia Bariátrica , Diabetes Mellitus Tipo 2 , Animais , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/cirurgia , Cães , Duodeno/metabolismo , Duodeno/cirurgia , Glucose/metabolismo , Homeostase , Humanos , Jejuno/metabolismo , Jejuno/cirurgia , Resultado do Tratamento , Redução de Peso
2.
Diabetologia ; 63(4): 875-884, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32016566

RESUMO

AIMS/HYPOTHESIS: Insufficient sleep is increasingly recognised as a major risk factor for the development of obesity and diabetes, and short-term sleep loss in clinical studies leads to a reduction in insulin sensitivity. Sleep loss-induced metabolic impairments are clinically relevant, since reductions in insulin sensitivity after sleep loss are comparable to insulin sensitivity differences between healthy individuals and those with impaired glucose tolerance. However, the relative effects of sleep loss vs high-fat feeding in the same individual have not been assessed. In addition, to our knowledge no diurnal (active during the daytime) non-human mammalian model of sleep loss-induced metabolic impairment exists, which limits our ability to study links between sleep and metabolism. METHODS: This study examined the effects of one night of total sleep deprivation on insulin sensitivity and beta cell function, as assessed by an IVGTT, before and after 9 months of high-fat feeding in a canine model. RESULTS: One night of total sleep deprivation in lean dogs impaired insulin sensitivity to a similar degree as a chronic high-fat diet (HFD)(normal sleep: 4.95 ± 0.45 mU-1 l-1 min-1; sleep deprivation: 3.14 ± 0.21 mU-1 l-1 min-1; HFD: 3.74 ± 0.48 mU-1 l-1 min-1; mean ± SEM). Hyperinsulinaemic compensation was induced by the chronic HFD, suggesting adequate beta cell response to high-fat feeding. In contrast, there was no beta cell compensation after one night of sleep deprivation, suggesting that there was metabolic dysregulation with acute sleep loss that, if sustained during chronic sleep loss, could contribute to the risk of type 2 diabetes. After chronic high-fat feeding, acute total sleep deprivation did not cause further impairments in insulin sensitivity (sleep deprivation + chronic HFD: 3.28 mU-1 l-1 min-1). CONCLUSIONS/INTERPRETATION: Our findings provide further evidence that sleep is important for metabolic health and establish a diurnal animal model of metabolic disruption during insufficient sleep.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Resistência à Insulina , Células Secretoras de Insulina/fisiologia , Privação do Sono/metabolismo , Animais , Gorduras na Dieta/farmacologia , Cães , Comportamento Alimentar/fisiologia , Intolerância à Glucose/etiologia , Intolerância à Glucose/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Masculino , Obesidade/complicações , Obesidade/metabolismo , Distribuição Aleatória , Privação do Sono/complicações
3.
Am J Physiol Endocrinol Metab ; 317(3): E535-E547, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31237449

RESUMO

CB1 receptor (CB1R) antagonism improves the deleterious effects of a high-fat diet (HFD) by reducing body fat mass and adipocyte cell size. Previous studies demonstrated that the beneficial effects of the CB1R antagonist rimonabant (RIM) in white adipose tissue (WAT) are partially due to an increase of mitochondria numbers and upregulation thermogenesis markers, suggesting an induction of WAT beiging. However, the molecular mechanism by which CB1R antagonism induces weight loss and WAT beiging is unclear. In this study, we probed for genes associated with beiging and explored longitudinal molecular mechanisms by which the beiging process occurs. HFD dogs received either RIM (HFD+RIM) or placebo (PL) (HFD+PL) for 16 wk. Several genes involved in beiging were increased in HFD+RIM compared with pre-fat, HFD, and HFD+PL. We evaluated lipolysis and its regulators including natriuretic peptide (NP) and its receptors (NPRs), ß-1 and ß-3 adrenergic receptor (ß1R, ß3R) genes. These genes were increased in WAT depots, accompanied by an increase in lipolysis in HFD+RIM. In addition, RIM decreased markers of inflammation and increased adiponectin receptors in WAT. We observed a small but significant increase in UCP1; therefore, we evaluated the newly discovered UCP1-independent thermogenesis pathway. We confirmed that SERCA2b and RYR2, the two key genes involved in this pathway, were upregulated in the WAT. Our data suggest that the upregulation of NPRs, ß-1R and ß-3R, lipolysis, and SERCA2b and RYR2 may be one of the mechanisms by which RIM promotes beiging and overall the improvement of metabolic homeostasis induced by RIM.


Assuntos
Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptores do Fator Natriurético Atrial/efeitos dos fármacos , Proteína Desacopladora 1/efeitos dos fármacos , Animais , Cães , Expressão Gênica/efeitos dos fármacos , Inflamação/patologia , Inflamação/prevenção & controle , Resistência à Insulina , Masculino , Biogênese de Organelas , Receptores Adrenérgicos beta/efeitos dos fármacos , Receptores Adrenérgicos beta/metabolismo , Rimonabanto/farmacologia , Termogênese/efeitos dos fármacos , Termogênese/genética , Redução de Peso/efeitos dos fármacos
5.
Diabetes ; 67(8): 1495-1503, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29752425

RESUMO

Although the ß-cells secrete insulin, the liver, with its first-pass insulin extraction (FPE), regulates the amount of insulin allowed into circulation for action on target tissues. The metabolic clearance rate of insulin, of which FPE is the dominant component, is a major determinant of insulin sensitivity (SI). We studied the intricate relationship among FPE, SI, and fasting insulin. We used a direct method of measuring FPE, the paired portal/peripheral infusion protocol, where insulin is infused stepwise through either the portal vein or a peripheral vein in healthy young dogs (n = 12). FPE is calculated as the difference in clearance rates (slope of infusion rate vs. steady insulin plot) between the paired experiments. Significant correlations were found between FPE and clamp-assessed SI (rs = 0.74), FPE and fasting insulin (rs = -0.64), and SI and fasting insulin (rs = -0.67). We also found a wide variance in FPE (22.4-77.2%; mean ± SD 50.4 ± 19.1) that is reflected in the variability of plasma insulin (48.1 ± 30.9 pmol/L) and SI (9.4 ± 5.8 × 104 dL · kg-1 · min-1 · [pmol/L]-1). FPE could be the nexus of regulation of both plasma insulin and SI.


Assuntos
Hipoglicemiantes/farmacocinética , Resistência à Insulina , Insulina/farmacocinética , Fígado/efeitos dos fármacos , Animais , Dorso/irrigação sanguínea , Glicemia/análise , Cães , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Técnica Clamp de Glucose , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/sangue , Infusões Intravenosas , Insulina/administração & dosagem , Insulina/sangue , Fígado/metabolismo , Masculino , Análise por Pareamento , Taxa de Depuração Metabólica , Veia Porta , Distribuição Aleatória , Reprodutibilidade dos Testes , Distribuição Tecidual , Trítio
6.
Am J Physiol Endocrinol Metab ; 315(4): E605-E612, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29509434

RESUMO

Hyperinsulinemia, accompanied by reduced first-pass hepatic insulin extraction (FPE) and increased secretion, is a primary response to insulin resistance. Different in vivo methods are used to estimate the clearance of insulin, which is assumed to reflect FPE. We compared two methodologically different but commonly used indirect estimates with directly measured FPE in healthy dogs ( n = 9). The indirect methods were 1) metabolic clearance rate of insulin (MCR) during the hyperinsulinemic-euglycemic clamp (EGC), a steady-state method, and 2) fractional clearance rate of insulin (FCR) during the frequently sampled intravenous glucose tolerance test (FSIGT), a dynamic method. MCR was calculated as the ratio of insulin infusion rate to steady-state plasma insulin. FCR was calculated as the exponential decay rate constant of the injected insulin. Directly measured FPE is based on the difference in insulin measurements during intraportal vs. peripheral vein insulin infusions. We found a strong correlation between indirect FCR (min-1) and FPE (%). In contrast, we observed a poor association between MCR (ml·min-1·kg-1) and FPE (%). Our findings in canines suggest that FCR measured during FSIGT can be used to estimate FPE. However, MCR calculated during EGC appears to be a poor surrogate for FPE.


Assuntos
Insulina/metabolismo , Fígado/metabolismo , Taxa de Depuração Metabólica , Animais , Cães , Técnica Clamp de Glucose , Teste de Tolerância a Glucose , Hiperinsulinismo/metabolismo , Veia Porta
7.
PLoS One ; 11(7): e0158703, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27398720

RESUMO

BACKGROUND: Exenatide's effects on glucose metabolism have been studied extensively in diabetes but not in pre-diabetes. OBJECTIVE: We examined the chronic effects of exenatide alone on glucose metabolism in pre-diabetic canines. DESIGN AND METHODS: After 10 weeks of high-fat diet (HFD), adult dogs received one injection of streptozotocin (STZ, 18.5 mg/kg). After induction of pre-diabetes, while maintained on HFD, animals were randomized to receive either exenatide (n = 7) or placebo (n = 7) for 12 weeks. ß-Cell function was calculated from the intravenous glucose tolerance test (IVGTT, expressed as the acute insulin response, AIRG), the oral glucose tolerance test (OGTT, insulinogenic index) and the graded-hyperglycemic clamp (clamp insulinogenic index). Whole-body insulin sensitivity was assessed by the IVGTT. At the end of the study, pancreatic islets were isolated to assess ß-cell function in vitro. RESULTS: OGTT: STZ caused an increase in glycemia at 120 min by 22.0% (interquartile range, IQR, 31.5%) (P = 0.011). IVGTT: This protocol also showed a reduction in glucose tolerance by 48.8% (IQR, 36.9%) (P = 0.002). AIRG decreased by 54.0% (IQR, 40.7%) (P = 0.010), leading to mild fasting hyperglycemia (P = 0.039). Exenatide, compared with placebo, decreased body weight (P<0.001) without altering food intake, fasting glycemia, insulinemia, glycated hemoglobin A1c, or glucose tolerance. Exenatide, compared with placebo, increased both OGTT- (P = 0.040) and clamp-based insulinogenic indexes (P = 0.016), improved insulin secretion in vitro (P = 0.041), but had no noticeable effect on insulin sensitivity (P = 0.405). CONCLUSIONS: In pre-diabetic canines, 12-week exenatide treatment improved ß-cell function but not glucose tolerance or insulin sensitivity. These findings demonstrate partial beneficial metabolic effects of exenatide alone on an animal model of pre-diabetes.


Assuntos
Hipoglicemiantes/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/patologia , Peptídeos/farmacologia , Estado Pré-Diabético/tratamento farmacológico , Peçonhas/farmacologia , Animais , Glicemia/metabolismo , Composição Corporal/efeitos dos fármacos , Modelos Animais de Doenças , Cães , Ingestão de Alimentos/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Exenatida , Jejum/sangue , Glucagon/metabolismo , Teste de Tolerância a Glucose , Hemoglobinas Glicadas/metabolismo , Hipoglicemiantes/uso terapêutico , Insulina/sangue , Resistência à Insulina , Fígado/efeitos dos fármacos , Fígado/fisiopatologia , Masculino , Peptídeos/uso terapêutico , Estado Pré-Diabético/sangue , Estado Pré-Diabético/metabolismo , Estado Pré-Diabético/fisiopatologia , Peçonhas/uso terapêutico
8.
Diabetologia ; 58(11): 2663-70, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26254577

RESUMO

AIMS/HYPOTHESIS: A normal consequence of increased energy intake and insulin resistance is compensatory hyperinsulinaemia through increased insulin secretion and/or reduced insulin clearance. Failure of compensatory mechanisms plays a central role in the pathogenesis of type 2 diabetes mellitus; consequently, it is critical to identify in vivo signal(s) involved in hyperinsulinaemic compensation. We have previously reported that high-fat feeding leads to an increase in nocturnal NEFA concentration. We therefore designed this study to test the hypothesis that elevated nocturnal NEFA are an early signal for hyperinsulinaemic compensation for insulin resistance. METHODS: Blood sampling was conducted in male dogs to determine 24 h profiles of NEFA at baseline and during high-fat feeding with and without acute nocturnal NEFA suppression using a partial A1 adenosine receptor agonist. RESULTS: High-fat feeding increased nocturnal NEFA and reduced insulin sensitivity, effects countered by an increase in acute insulin response to glucose (AIR(g)). Pharmacological NEFA inhibition after 8 weeks of high-fat feeding lowered NEFA to baseline levels and reduced AIR(g) with no effect on insulin sensitivity. A significant relationship emerged between nocturnal NEFA levels and AIR(g). This relationship indicates that the hyperinsulinaemic compensation induced in response to high-fat feeding was prevented when the nocturnal NEFA pattern was returned to baseline. CONCLUSIONS/INTERPRETATION: Elevated nocturnal NEFA are an important signal for hyperinsulinaemic compensation during diet-induced insulin resistance.


Assuntos
Ritmo Circadiano/fisiologia , Diabetes Mellitus Tipo 2/veterinária , Ácidos Graxos não Esterificados/sangue , Hiperinsulinismo/veterinária , Resistência à Insulina/fisiologia , Animais , Biomarcadores/sangue , Glicemia , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/diagnóstico , Dieta , Cães , Hiperinsulinismo/sangue , Hiperinsulinismo/diagnóstico , Insulina/metabolismo , Secreção de Insulina , Masculino
9.
Am J Physiol Endocrinol Metab ; 309(8): E747-58, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26306598

RESUMO

The improvement of hepatic insulin sensitivity by the cannabinoid receptor 1 (CB1R) antagonist rimonabant (RIM) has been recently been reported to be due to upregulation of adiponectin. Several studies demonstrated that improvement in insulin clearance accompanies the enhancement of hepatic insulin sensitivity. However, the effects of RIM on hepatic insulin clearance (HIC) have not been fully explored. The aim of this study was to explore the molecular mechanism(s) by which RIM affects HIC, specifically to determine whether upregulation of liver adiponectin receptors (ADRs) and other key genes regulated by adiponectin mediate the effects. To induce insulin resistance in skeletal muscle and liver, dogs were fed a hypercaloric high-fat diet (HFD) for 6 wk. Thereafter, while still maintained on a HFD, animals received RIM (HFD+RIM; n = 11) or placebo (HFD+PL; n = 9) for an additional 16 wk. HIC, calculated as the metabolic clearance rate (MCR), was estimated from the euglycemic-hyperinsulinemic clamp. The HFD+PL group showed a decrease in MCR; in contrast, the HFD+RIM group increased MCR. Consistently, the expression of genes involved in HIC, CEACAM-1 and IDE, as well as gene expression of liver ADRs, were increased in the HFD+RIM group, but not in the HFD+PL group. We also found a positive correlation between CEACAM-1 and the insulin-degrading enzyme IDE with ADRs. Interestingly, expression of liver genes regulated by adiponectin and involved in lipid oxidation were increased in the HFD+RIM group. We conclude that in fat-fed dogs RIM enhances HIC, which appears to be linked to an upregulation of the adiponectin pathway.


Assuntos
Antagonistas de Receptores de Canabinoides/farmacologia , Dieta Hiperlipídica , Insulina/metabolismo , Fígado/efeitos dos fármacos , Piperidinas/farmacologia , Pirazóis/farmacologia , RNA Mensageiro/efeitos dos fármacos , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptores de Adiponectina/efeitos dos fármacos , Animais , Antígenos CD/efeitos dos fármacos , Antígenos CD/metabolismo , Moléculas de Adesão Celular/efeitos dos fármacos , Moléculas de Adesão Celular/metabolismo , Cães , Técnica Clamp de Glucose , Resistência à Insulina , Insulisina/efeitos dos fármacos , Insulisina/metabolismo , Fígado/metabolismo , Masculino , Taxa de Depuração Metabólica , RNA Mensageiro/metabolismo , Receptores de Adiponectina/genética , Receptores de Adiponectina/metabolismo , Rimonabanto , Regulação para Cima/efeitos dos fármacos
10.
Obesity (Silver Spring) ; 23(1): 105-11, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25322680

RESUMO

OBJECTIVES: To determine whether a selective increase of visceral adipose tissue content will result in insulin resistance. METHODS: Sympathetic denervation of the omental fat was performed under general inhalant anesthesia by injecting 6-hydroxydopamine in the omental fat of lean mongrel dogs (n = 11). In the conscious animal, whole-body insulin sensitivity was assessed by the minimal model (SI ) and the euglycemic hyperinsulinemic clamp (SICLAMP ). Changes in abdominal fat were monitored by magnetic resonance. All assessments were determined before (Wk0) and 2 weeks (Wk2) after denervation. Data are medians (upper and lower interquartile). RESULTS: Denervation of omental fat resulted in increased percentage (and content) of visceral fat [Wk0: 10.2% (8.5-11.4); Wk2: 12.4% (10.4-13.6); P < 0.01]. Abdominal subcutaneous fat remained unchanged. However, no changes were found in SI [Wk0: 4.7 (mU/l)(-1) min(-1) (3.1-8.8); Wk2: 5.3 (mU/l)(-1) min(-1) (4.5-7.2); P = 0.59] or SICLAMP [Wk0: 42.0 × 10(-4) dl kg(-1) min(-1) (mU/l)(-1) (41.0-51.0); Wk2: 40.0 × 10(-4) dl kg(-1) min(-1) (mU/l) (-1) (34.0-52.0); P = 0.67]. CONCLUSIONS: Despite a selective increase in visceral adiposity in dogs, insulin sensitivity in vivo did not change, which argues against the concept that accumulation of visceral adipose tissue contributes to insulin resistance.


Assuntos
Resistência à Insulina , Gordura Intra-Abdominal/anatomia & histologia , Gordura Intra-Abdominal/metabolismo , Animais , Composição Corporal , Peso Corporal , Cães , Técnica Clamp de Glucose , Gordura Intra-Abdominal/inervação , Imageamento por Ressonância Magnética , Masculino , Modelos Animais , Omento/inervação , Tamanho do Órgão , Gordura Subcutânea Abdominal/anatomia & histologia , Gordura Subcutânea Abdominal/inervação , Gordura Subcutânea Abdominal/metabolismo , Simpatectomia Química/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...