Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 125(5): 056401, 2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32794861

RESUMO

For most chiralities, semiconducting nanotubes display topologically protected end states of multiple degeneracies. We demonstrate using density matrix renormalization group based quantum chemistry tools that the presence of Coulomb interactions induces the formation of robust end spins. These are the close analogs of ferromagnetic edge states emerging in graphene nanoribbons. The interaction between the two ends is sensitive to the length of the nanotube, its dielectric constant, and the size of the end spins: for S=1/2 end spins, their interaction is antiferromagnetic, while for S>1/2, it changes from antiferromagnetic to ferromagnetic as the nanotube length increases. The interaction between end spins can be controlled by changing the dielectric constant of the environment, thereby providing a possible platform for two-spin quantum manipulations.

2.
Phys Rev Lett ; 118(21): 216801, 2017 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-28598676

RESUMO

We study the relation between the global topology of the Hofstadter butterfly of a multiband insulator and the topological invariants of the underlying Hamiltonian. The global topology of the butterfly, i.e., the displacement of the energy gaps as the magnetic field is varied by one flux quantum, is determined by the spectral flow of energy eigenstates crossing gaps as the field is tuned. We find that for each gap this spectral flow is equal to the topological invariant of the gap, i.e., the net number of edge modes traversing the gap. For periodically driven systems, our results apply to the spectrum of quasienergies. In this case, the spectral flow of the sum of all the quasienergies gives directly the Rudner-Lindner-Berg-Levin invariant that characterizes the topological phases of a periodically driven system.

3.
Phys Rev Lett ; 94(17): 173602, 2005 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-15904289

RESUMO

We propose the entanglement potential (EP) as a measure of nonclassicality for quantum states of a single-mode electromagnetic field. It is the amount of two-mode entanglement that can be generated from the field using linear optics, auxiliary classical states, and ideal photodetectors. The EP detects nonclassicality, has a direct physical interpretation, and can be computed efficiently. These three properties together make it stand out from previously proposed nonclassicality measures. We derive closed expressions for the EP of important classes of states and analyze as an example of the degradation of nonclassicality in lossy channels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...