Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 2(12): e00215, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28018984

RESUMO

Wind erosion not only affects agricultural productivity but also soil, air, and water quality. Dust and specifically particulate matter ≤10 µm (PM-10) has adverse effects on respiratory health and also reduces visibility along roadways, resulting in auto accidents. The Wind Erosion Prediction System (WEPS) was developed by the USDA-Agricultural Research Service to simulate wind erosion and provide for conservation planning on cultivated agricultural lands. A companion product, known as the Single-Event Wind Erosion Evaluation Program (SWEEP), has also been developed which consists of the stand-alone WEPS erosion submodel combined with a graphical interface to simulate soil loss from single (i.e., daily) wind storm events. In addition to agricultural lands, wind driven dust emissions also occur from other anthropogenic sources such as construction sites, mined and reclaimed areas, landfills, and other disturbed lands. Although developed for agricultural fields, WEPS and SWEEP are useful tools for simulating erosion by wind for non-agricultural lands where typical agricultural practices are not employed. On disturbed lands, WEPS can be applied for simulating long-term (i.e., multi-year) erosion control strategies. SWEEP on the other hand was developed specifically for disturbed lands and can simulate potential soil loss for site- and date-specific planned surface conditions and control practices. This paper presents novel applications of WEPS and SWEEP for developing erosion control strategies on non-agricultural disturbed lands. Erosion control planning with WEPS and SWEEP using water and other dust suppressants, wind barriers, straw mulch, re-vegetation, and other management practices is demonstrated herein through the use of comparative simulation scenarios. The scenarios confirm the efficacy of the WEPS and SWEEP models as valuable tools for supporting the design of erosion control plans for disturbed lands that are not only cost-effective but also incorporate a science-based approach to risk assessment.

2.
J Environ Qual ; 35(6): 2250-60, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17071896

RESUMO

Research has verified the occurrence of veterinary antibiotics in manure, agricultural fields, and surface water bodies, yet little research has evaluated antibiotic runoff from agricultural fields. The objective of this study was to evaluate the potential for agricultural runoff to contribute antibiotics to surface water bodies in a worst-case scenario. Our hypothesis was that there would be significant differences in antibiotic concentrations, partitioning of losses between runoff and sediment, and pseudo-partitioning coefficients (ratio of sediment concentration to runoff concentration) among antibiotics. An antibiotic solution including tetracycline (TC), chlortetracycline (CTC), sulfathiazole (STZ), sulfamethazine (SMZ), erythromycin (ERY), tylosin (TYL), and monensin (MNS) was sprayed on the soil surface 1 h before rainfall simulation (average intensity = 60 mm h(-1) for 1 h). Runoff samples were collected continuously and analyzed for aqueous and sediment antibiotic concentrations. MNS had the highest concentration in runoff, resulting in the highest absolute loss, although the amount of loss associated with sediment transport was <10%. ERY had the highest concentrations in sediment and had a relative loss associated with sediment >50%. TYL also had >50% relative loss associated with sediment, and its pseudo-partitioning coefficient (P-PC) was very high. The tetracyclines (TC and CTC) had very low aqueous concentrations and had the lowest absolute losses. If agricultural runoff is proven to result in development of resistance genes or toxicity to aquatic organisms, then erosion control practices could be used to reduce TC, ERY, and TYL losses leaving agricultural fields. Other methods will be needed to reduce transport of other antibiotics.


Assuntos
Antibacterianos/análise , Sedimentos Geológicos/análise , Solo/análise , Movimentos da Água , Poluentes Químicos da Água/análise , Adsorção , Animais , Transporte Biológico , Clortetraciclina/análise , Cromatografia Líquida de Alta Pressão , Humanos , Chuva , Sulfametazina/análise , Sulfatiazol , Sulfatiazóis/análise , Espectrometria de Massas em Tandem , Tetraciclina/análise , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...