Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Sports Med ; 46(8): 1987-1996, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29792508

RESUMO

BACKGROUND: Application of the chondrogenic transforming growth factor beta (TGF-ß) is an attractive approach to enhance the intrinsic biological activities in damaged articular cartilage, especially when using direct gene transfer strategies based on the clinically relevant recombinant adeno-associated viral (rAAV) vectors. PURPOSE: To evaluate the ability of an rAAV-TGF-ß construct to modulate the early repair processes in sites of focal cartilage injury in minipigs in vivo relative to control (reporter lacZ gene) vector treatment. STUDY DESIGN: Controlled laboratory study. METHODS: Direct administration of the candidate rAAV-human TGF-ß (hTGF-ß) vector was performed in osteochondral defects created in the knee joint of adult minipigs for macroscopic, histological, immunohistochemical, histomorphometric, and micro-computed tomography analyses after 4 weeks relative to control (rAAV- lacZ) gene transfer. RESULTS: Successful overexpression of TGF-ß via rAAV at this time point and in the conditions applied here triggered the cellular and metabolic activities within the lesions relative to lacZ gene transfer but, at the same time, led to a noticeable production of type I and X collagen without further buildup on the subchondral bone. CONCLUSION: Gene therapy via direct, local rAAV-hTGF-ß injection stimulates the early reparative activities in focal cartilage lesions in vivo. CLINICAL RELEVANCE: Local delivery of therapeutic (TGF-ß) rAAV vectors in focal defects may provide new, off-the-shelf treatments for cartilage repair in patients in the near future.


Assuntos
Cartilagem Articular/fisiologia , Terapia Genética , Traumatismos do Joelho/terapia , Fator de Crescimento Transformador beta/metabolismo , Animais , Cartilagem Articular/diagnóstico por imagem , Cartilagem Articular/lesões , Proliferação de Células , Condrogênese , Dependovirus/genética , Vetores Genéticos , Humanos , Traumatismos do Joelho/diagnóstico por imagem , Traumatismos do Joelho/metabolismo , Suínos , Porco Miniatura , Fator de Crescimento Transformador beta/genética , Microtomografia por Raio-X
2.
FASEB J ; 32(10): 5298-5311, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29688810

RESUMO

The continuous presence of TGF-ß is critically important to induce effective chondrogenesis. To investigate chondrogenesis in a cartilage defect, we tested the hypothesis that the implantation of TGF-ß1-releasing scaffolds improves very early cartilage repair in vivo. Spatiotemporal controlled release of TGF-ß1 was achieved from multiblock scaffolds that were implanted in osteochondral defects in the medial femoral condyles of adult minipigs. We observed a sustained presence of TGF-ß1 at 4 wk in vivo, which significantly promoted structural aspects of early overall cartilage repair, especially cellularity, cellular morphology, and safranin O staining intensity. Furthermore, early aggrecan and type II collagen production were both increased in specific topographic patterns in cartilaginous repair tissue. Sustained release of TGF-ß1 also increased cell numbers and proliferation, staining intensities for the stem cell surface marker, CD105, and number of stromal cell-derived factor-1 (SDF-1) -positive cells within cartilaginous repair tissue. These data identify a mechanism by which TGF-ß1 modulates early chondrogenesis by primarily increasing the number of progenitor cells arising from the subchondral bone marrow compartment via the SDF-1/chemokine (CXC motif) receptor 4 pathway, their proliferation, differentiation, and extracellular matrix deposition in specific topographic patterns, highlighting the pivotal role played by TGF-ß1 during this crucial phase.-Asen, A.-K., Goebel, L., Rey-Rico, A., Sohier, J., Zurakowski, D., Cucchiarini, M., Madry, H. Sustained spatiotemporal release of TGF-ß1 confers enhanced very early chondrogenic differentiation during osteochondral repair in specific topographic patterns.


Assuntos
Cartilagem , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Condrogênese/efeitos dos fármacos , Fator de Crescimento Transformador beta , Animais , Cartilagem/lesões , Cartilagem/metabolismo , Cartilagem/fisiologia , Quimiocina CXCL12/metabolismo , Implantes de Medicamento , Endoglina/metabolismo , Receptores CXCR4/metabolismo , Suínos , Porco Miniatura , Fator de Crescimento Transformador beta/farmacocinética , Fator de Crescimento Transformador beta/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...